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1 Introduction

Program analyzers have proven effective in detecting undesired behavior in programs such
as crashes, bugs, and security vulnerabilities. Some settings require high assurance in the
results of program analysis, such as software embedded in automobiles or airplanes. To
achieve high assurance in the correctness or security of a piece of software, formal methods
are used to automatically construct or check proofs of these properties using computers.

Achieving high assurance for a piece of software is a monumental task, and is widely
considered by experts to be out of reach for mainstream use using current methods. As
a result, verification is only attempted for the most critical software components. In this
thesis, I describe how to bring high assurance software closer to a reality by improving the
methods used to develop implementations and proofs for program analyzers.

There are two fundamental challenges in the state of the art for mechanized verification
of program analyzers:
1. small changes to program analyzers require large changes in their proofs; and
2. a proof for a program analyzer takes much longer to complete than its implementation.
I improve on the first problem by demonstrating how to design Compositional Program
Analyzers and Definitional Program Analyzers which allow one to rapidly prototype different
analysis designs without having to rewrite proofs of correctness. I improve on the second
problem by developing a new framework for Mechanizing Program Analyzers which supports
the development of verified program analyzers directly from their proofs of correctness.

2 Compositional Program Analyzers

The design and implementation of static analyzers has become increasingly systematic. Yet
although the design is systematic, it often requires tedious and error prone work to implement
an analyzer and prove it sound. The issue is that static analysis features and their proofs of
soundness do not compose well, preventing reuse in both implementation and metatheory.

I solve the problem of constructing static analyzers and their proofs from reusable com-
ponents by introducing Galois transformers[2]: monad transformers that transport Galois
connection properties. In concert with a monadic interpreter, I define a library of monad
transformers that implement building blocks for classic analysis parameters like context,
heap, path and flow (in)sensitivity. Moreover, these can be composed together independent
of the language being analyzed.

Significantly, a Galois transformer can be proved sound once and for all, making it
a reusable analysis component. As new analysis features and abstractions are developed
and mixed in, soundness proofs need not be reconstructed, as the composition of a monad
transformer stack is sound by virtue of its constituents. Galois transformers provide a viable
foundation for reusable and composable metatheory for program analysis.
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2 Compositional and Mechanically Verified Program Analyzers

Finally, these Galois transformers shift the level of abstraction in analysis design and
implementation to a level where non-specialists have the ability to synthesize sound analyzers
over a number of parameters.

The Technical Problem

Consider the following program:

1 function myfun(I : int) → int
2 var x,y : int
3 if I ̸= 0
4 then x := 0
5 else x := 1
6 if I ̸= 0
7 then y := 100 / I

8 else y := 100 / x

9 return y

This program branches on the function argument I to define x such that x = 0 ⇔ I ̸= 0.
The variable y is then assigned a value by dividing by I if I ̸= 0, or x if I = 0. The
goal of the analysis is to discover division by zero errors, and this program is always safe
because of the correlation between x and I. However, only sophisticated and computationally
expensive techniques like path sensitivity are capable of discovering this information. In a
security-critical setting, path sensitivity is the right choice for the analysis despite the added
computational complexity. In performance-critical settings path sensitivity is undesirable
because of the cost of the analysis. What is needed is a technique for designing a program
analysis parameterized by its path sensitivity properties.

Galois Transformers are reusable building blocks for building analysers that provide each
choice in the path sensitivity spectrum: flow insensitive, flow sensitive and path sensitive.
A flow insensitive Galois Transformers can simply be replaced by a path sensitive Galois
transformer, requiring no further change to the analyzer or its proof. In this way, one can
rapidly prototype this design space for a given program analysis setting. Proofs of correctness
for the analyzer also carry over between different instantiations of Galois Transformers.

3 Definitional Program Analyzers

Two dominant schools of through for designing program analyzers are the constraint-based
approach and small-step state-machines-based approach. In both paradigms, the analysis is
computed by the least-fixed-point of a set of constraint equations, or small-step collecting
semantics respectively.

On the other hand, there is a large body of work on denotational semantics and defini-
tional interpreters, or so-called “big-step” interpreters. This style is popular for describing
concrete semantics, but has not yet seen adoption for describing abstract semantics, or as
the basis for defining program analyzers.

To bridge this gap I develop Abstract Definitional Interpreters and show that definitional
interpreters written in monadic style can express not only the usual notion of (concrete) inter-
pretation, but also a wide variety of collecting semantics, abstract interpretations, symbolic
execution, and their intermixings.

In this work I reconstruct a definitional abstract interpreter for a higher-order language
to use monadic operations and a novel fixpoint iteration strategy. Through a monadic defin-
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itional design, I achieve a computable abstract interpreter that arises from the composition
of simple, independent components.

Remarkably, the resulting program analyzer implements a form of pushdown control flow
analysis (PDCFA) in which calls and returns are always properly matched in the abstract
semantics. True to the definitional style of Reynolds, the evaluator involves no explicit
mechanics to achieve this property; it is simply inherited from the defining language.

The Technical Problem

Consider the following program:

1 function id(x : any) → any
2 return x

3 function main () → void
4 var y := id(1)
5 print ("Y")
6 var z := id(2)
7 print ("Z")

Clearly, the printed output of this program is "YZ". However, most control-flow analyzers
will report that the output could be any string that matches the regular expression "Y*Z".
The problem is that control flow analyzers typically construct a graph of call edges, in this
case from lines 5 and 7 to the body of id, and return edges, in this case from id back to
lines 5 and 7. Without precise call-return matching, control-flow analyzers get confused and
think the program could call id at line 5 and then return to line 7, or call id at line 7 and
return to line 5. A “k-call-site-sensitive” analysis can distinguish these cases, but only up
to a finite call-depth.

A pushdown analysis solves the call/return matching problem up to infinite depth. Prior
descriptions of pushdown analysis are set in the context of actual pushdown automata[10],
Dyck state graphs[4] or small-step state machines[11, 7, 6], and each approach require ad-hoc
extensions and instrumentation to the design of the program analyzer. By writing program
analyzers in a definitional style, precise call/return matching is inherited from the defining
metalanguage. To achieve this, I solve the key technical challenging in defining definitional
program analyzers through a novel big-step fixpoint finding algorithm.

4 Mechanizing Program Analyzers

Galois connections are a foundational tool for structuring abstraction in semantics and their
use lies at the heart of the theory of abstract interpretation. Yet, mechanization of Galois
connections remains limited to restricted modes of use, preventing their general application
in mechanized metatheory and certified programming.

I present Constructive Galois Connections[3], a variant of Galois connections that is
effective both on paper and in proof assistants; is complete with respect to a large subset
of classical Galois connections; and enables more general reasoning principles, including the
“calculational” style advocated by Cousot.

To design constructive Galois connection I identify a restricted mode of use of classical
ones which is both general and amenable to mechanization in dependently-typed functional
programming languages. Crucial to the metatheory is the addition of monadic structure to
Galois connections to control a “specification effect”. Effectful calculations may reason clas-
sically, while pure calculations have extractable computational content. Explicitly moving
between the worlds of specification and implementation is enabled by the metatheory.
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To validate the approach, I provide two case studies in mechanizing existing proofs from
the literature: one uses calculational abstract interpretation to design a static analyzer[1],
the other forms a semantic basis for gradual typing[5]. Both mechanized proofs closely follow
their original paper-and-pencil counterparts, employ reasoning principles not captured by
previous mechanization approaches[8, 9], support the extraction of verified algorithms, and
are novel.

The Technical Problem

Consider a simple parity program analyzer designed using the following Galois connection
between natural numbers N and parities P (plus Galois Connection laws not shown):

P := {even, odd}
α : ℘(N) → ℘(P)

α(N) :=
∪

n∈N

{
{even} if even(n)
{odd} if odd(n)

γ : ℘(P) → ℘(N)

γ(P ) :=
∪

p∈P

{
{n | even(n)} if p = even
{n | odd(n)} if p = odd

A static analyzer A : ℘(P) → ℘(P) for a concrete semantics C : ℘(N) → ℘(N) is then justified
by relating to (or even calculating from) the composition of C with α and γ:

sound : α ◦ C ◦ γ ⊆ A

The trouble in mechanizing sound is that A is expected to be computable, meaning its type
℘(P) → ℘(P) represents an algorithm mapping between finite sets of parities. However, the
specification α ◦ C ◦ γ, also at type ℘(P) → ℘(P), represents an induced specification which
cannot be computed.

In a constructive setting which supports program extraction, these two powerset types
have different representations. Constructed powersets ℘(P) are modelled with a datatype
like a list or binary tree, or in the case of ℘(P) as an enumeration of its inhabitants:

℘(P) ≈ P+ := {⊥, even, odd, ⊤}

However, specification powersets ℘(P) are modelled as predicates on P:

℘(P) ≈ P → prop

On paper the encoding of ℘(P) doesn’t matter, but to perform verified program extraction
on A, a solution must be found for encoding proofs like sound which transition between
specification and algorithm.

The solution is to design a constructive theory of Galois connections, which can be seen
as a restricted mode of use of classical Galois connections. The essence of the theory is a
different adjunction η/µ instead of α/γ:

η : N → P

η(n) :=
{

even if even(n)
odd if odd(n)

µ : P → ℘(N)

µ(p) :=
{

{n | even(n)} if p = even
{n | odd(n)} if p = odd

In this restricted theory, executable algorithms can be extracted directly from the results of
proofs in the abstract interpretation paradigm.
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