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During the past decade, differential privacy has become the gold standard for protecting the privacy of individ-
uals. However, verifying that a particular program provides differential privacy often remains a manual task
to be completed by an expert in the field. Language-based techniques have been proposed for fully automat-
ing proofs of differential privacy via type system design, however these results have lagged behind advances
in differentially-private algorithms, leaving a noticeable gap in programs which can be automatically verified
while also providing state-of-the-art bounds on privacy.

We propose Duet, an expressive higher-order language, linear type system and tool for automatically
verifying differential privacy of general-purpose higher-order programs. In addition to general purpose pro-
gramming, Duet supports encoding machine learning algorithms such as stochastic gradient descent, as well
as common auxiliary data analysis tasks such as clipping, normalization and hyperparameter tuning–each of
which are particularly challenging to encode in a statically verified differential privacy framework.

We present a core design of the Duet language and linear type system, and complete key proofs about
privacy for well-typed programs. We then show how to extend Duet to support realistic machine learning
applications and recent variants of differential privacy which result in improved accuracy for many practi-
cal differentially private algorithms. Finally, we implement several differentially private machine learning
algorithms in Duet which have never before been automatically verified by a language-based tool, and we
present experimental results which demonstrate the benefits of Duet’s language design in terms of accuracy
of trained machine learning models.

CCS Concepts: • Security and privacy → Logic and verification; • Theory of computation → Logic
and verification; Linear logic.
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1 INTRODUCTION
Advances in big data and machine learning have achieved large-scale societal impact over the
past decade. This impact is accompanied by a growing demand for data collection, aggregation
and analysis at scale. This resulting explosion in the amount of data collected by organizations,
however, has raised important new security and privacy concerns.
Differential privacy [Dwork 2006; Dwork et al. 2006, 2014] is a technique for addressing these

issues. Differential privacy allows general statistical analysis of data while protecting data about
individuals with a formal guarantee of privacy. Because of its desirable formal guarantees, differ-
ential privacy has received increased attention, with ongoing real-world deployments at organiza-
tions including Google [Erlingsson et al. 2014], Apple [app 2016], and the US Census [Haney et al.
2017; Machanavajjhala et al. 2008]. A number of systems for performing differentially private data
analytics have been built and demonstrated to be effective [Johnson et al. 2018, 2017; McSherry
2009a; Mohan et al. 2012; Narayan and Haeberlen 2012; Proserpio et al. 2014; Roy et al. 2010].

Differential privacy plays an increasingly important role in machine learning, as recent work
has shown that a trained model can leak information about data it was trained on [Fredrikson
et al. 2015; Shokri et al. 2017; Wu et al. 2016]. Differential privacy provides a robust solution to
this problem, and as a result, a number of differentially private algorithms have been developed
for machine learning [Abadi et al. 2016; Bassily et al. 2014a; Chaudhuri et al. 2011; Friedman et al.
2016; Papernot et al. 2016; Song et al. 2013; Talwar et al. 2015; Wu et al. 2017].

Few practical approaches exist, however, for automatically proving that a general-purpose pro-
gram satisfies differential privacy—an increasingly desirable goal, since many machine learning
pipelines are expressed as programs that combine existing algorithmswith custom code. Enforcing
differential privacy for a new program currently requires a new, manually-written privacy proof.
This process is arduous, error-prone, and must be performed by an expert in differential privacy
(and re-performed, each time the program is modified).

We present Duet, a programming language, type system and tool for expressing and stati-
cally verifying privacy-preserving programs. Duet supports (1) general purpose programming fea-
tures like compound datatypes and higher-order functions, (2) library functions for matrix-based
computations, and (3) multiple state-of-the-art variants of differential privacy—(ϵ,δ)-differential
privacy [Dwork et al. 2014], Rényi differential privacy [Mironov 2017], zero-concentrated differ-
ential privacy (zCDP) [Bun and Steinke 2016], and truncated-concentrated differential privacy
(tCDP) [Bun et al. 2018]—and can be easily extended to new ones. Duet strikes a strategic balance
between generality, practicality, extensibility, and precision of computed privacy bounds.
The design of Duet consists of two separate, mutually embedded languages, each with its own

type system. The sensitivity language uses linear types with metric scaling (as in Fuzz [Reed and
Pierce 2010]) to bound function sensitivity. The privacy language uses linear types without metric
scaling (novel in Duet) to compose differentially private computations. Disallowing the use of
scaling in the privacy language is essential to encodemore advanced variants of differential privacy
(like (ϵ,δ)) in a linear type system.
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Linear typing [Barber 1996; Girard 1987] is a good fit for both privacy and sensitivity analysis
because resources are tracked per-variable and combined additively. In particular, our linear typ-
ing approach to privacy allows for independent privacy costs for multiple function arguments, a
feature shared by Fuzz and DFuzz (which only support pure ϵ-differential privacy), but not sup-
ported by prior type systems for (ϵ,δ)-differential privacy. This limitation of prior work is due to
treating privacy as a computational “effect”—a property of the output via an indexed monad—as
opposed to our treatment of privacy as a “co-effect”—a property of the context via linear typing.
Our main idea is to co-design two separate languages for privacy and sensitivity, and our main

insight is that a linear type system can (1) model more powerful variants of differential privacy
(like (ϵ,δ)) when strengthened to disallow scaling, and (2) interact seamlessly with a sensitivity-
type system which does allow scaling. Each language embeds inside the other, and the privacy
mechanisms of the underlying privacy definition (e.g. the Gaussianmechanism [Dwork et al. 2014])
form the interface between the two languages. Both languages use similar syntax and identical
types. The two languages aid type checking, the proof of type soundness, and our implementation
of type inference; programmers need not be intimately aware of the multi-language design.
In addition to differential-privacy primitives like the Gaussian mechanism, we provide a core

language design for matrix-based data analysis tasks, such as aggregation, clipping and gradients.
Key challenges we overcome in our design are how these features compose in terms of function
sensitivity, and how to statically track bounds on vector norms (due to clipping, for the purposes of
privacy)—and each in a way that is general enough to support a wide range of useful applications.
We demonstrate the usefulness of Duet by implementing and verifying several differentially

private machine learning algorithms from the literature, including private stochastic gradient de-
scent [Bassily et al. 2014a] and private Frank-Wolfe [Talwar et al. 2015], among many others. We
also implement a variant of stochastic gradient descent suitable for deep learning. For each of these
algorithms, no prior work has demonstrated an automatic verification of differential privacy, and
Duet is able to automatically infer privacy bounds that equal and in some cases improve upon
previously published manual privacy proofs.
We have implemented a typechecker and interpreter for Duet, and we use these to perform

an empirical evaluation comparing the accuracy of models trained using our implementations.
Although the “punchline” of the empirical results are unsurprising due to known advantages of
the differential privacy definitions used (e.g., that using recent variants like zero-concentrated
differential privacy results in improved accuracy), our results show the extent of the accuracy im-
provements for specific algorithms and further reinforce the idea that choosing the best definition
consistently results in substantially better accuracy of the trained model.

Contributions. In summary, we make the following contributions:
• We present Duet, a language, linear type system and tool for expressing and automatically
verifying differentially private programs. Duet supports a combination of (1) general purpose,
higher order programming, (2) advanced definitions of differential privacy, (3) independent
tracking of privacy costs formultiple function arguments, and (4) auxiliary differentially-private
data analysis tasks such as clipping, normalization, and hyperparameter tuning.
• We formalize Duet’s type system and semantics, and complete key proofs about privacy of
well-typed programs.
• We demonstrate a battery of case studies consisting of medium-sized, real-world, differentially
private machine learning algorithms which are successfully verified with optimal (or near-
optimal) privacy bounds. In some cases, Duet infers privacy bounds which improve on the
best previously published manually-verified result.
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• We conduct an experimental evaluation to demonstrate Duet’s feasibility in practice by train-
ing two machine learning algorithms on several non-toy real-world datasets using Duet’s in-
terpreter. These results demonstrate the effect of improved privacy bounds on the accuracy of
the trained models.

2 PRELIMINARIES
2.1 Background: Differential Privacy
This section briefly summarizes the basics of differential privacy. See Dwork and Roth’s refer-
ence [Dwork et al. 2014] for a detailed description. Differential privacy considers sensitive input
data represented by a vector x ∈ Dn , in which xi represents the data contributed by user i . The
distance between two inputs x ,y ∈ Dn is d(x ,y) = |{i |xi , yi }|. Two inputs x ,y are neighbors if
d(x ,y) = 1, i.e., if they differ in only one index. A randomized mechanismK : Dn → Rd preserves
(ϵ,δ)-differential privacy if for any neighbors x ,y ∈ Dn and any set S of possible outputs:

Pr[K(x) ∈ S] ≤ eϵPr[K(y) ∈ S] + δ

The main idea is that when ϵ and δ are very small, then the resulting output distributions will be
very close, and therefore nearly indistinguishible.

The ϵ parameter, also called the privacy budget, controls the strength of the privacy guarantee.
The δ parameter allows for a non-zero probability that the guarantee fails, and is typically set to a
negligible value. The case when δ = 0 is called pure or ϵ-differential privacy; the case when δ > 0
is called approximate or (ϵ,δ)-differential privacy. Typical values for ϵ and δ are ϵ ∈ [0.1−10] and
δ = 1

n2 where n is the number of input entries [Dwork et al. 2014].

Function sensitivity. A function’s sensitivity is the amount its output can change when its input
changes. For example, the function f (x) = x+x has a sensitivity of 2, since increasing or decreas-
ing its input by 1 has the effect of increasing or decreasing its output by 2. A real-valued function
f is called n-sensitive if maxx,y: |x−y | ≤1 | f (x) − f (y)| = n.
This idea can be generalized to vector-valued functions. The global L1 sensitivity of a query

f : Dn → Rd is written GSf and defined GSf = maxx,y:d(x,y)=1 | f (x) − f (y)|1 where | − |1 is
the L1 norm (i.e., sum of pointwise distances between elements). The L2 sensitivity is analogous,
using the L2 norm.

Differential privacy mechanisms. Two basic differential privacy mechanisms are the Laplace
mechanism [Dwork et al. 2006], which preserves (ϵ, 0)-differential privacy, and the Gaussian mech-
anism [Dwork et al. 2014], which preserves (ϵ,δ)-differential privacy. For a function f : Dn → Rd
with L1 sensitivity of∆1, the Laplace mechanism adds noise drawn from Lap(∆1

ϵ
) to each element

of the output. For f with L2 sensitivity of ∆2, the Gaussian mechanism adds noise drawn from
N(0,

2∆2

2
ln(1.25/δ )
ϵ2 ) to each element.

The exponential mechanism [McSherry and Talwar 2007] selects an element of a set based on the
scores assigned to each element by a scoring function. Let u : Dn × R → R be a scoring function
with L1 sensitivity ∆. The mechanism selects and outputs an element r ∈ R with probability
proportional to exp( ϵu(x,r )2∆ ), and preserves (ϵ, 0)-differential privacy.

Composition. A key property of differential privacy is that differentially private computations
compose. The sequential composition theorem says that ifM1 andM2 satisfy (ϵ,δ)-differential
privacy, then their combination satisfies (2ϵ, 2δ)-differential privacy.
Tighter bounds on privacy cost can be achieved using the advanced composition theorem [Dwork

et al. 2014], at the expense of increasing δ . The advanced composition theorem says that for
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Variant Sequential Composition k-Loop Basic Mechanism
ϵ -DP [Dwork et al. 2014] ϵ1 + ϵ2 ≜ ϵ1 + ϵ2 kϵ Laplace

(ϵ, δ )-DP [Dwork et al. 2014] (ϵ1, δ1) + (ϵ2, δ2) ≜ (ϵ1 + ϵ2, δ1 + δ2) (kϵ, kδ ) Gaussian
RDP [Mironov 2017] (α, ϵ1) + (α, ϵ2) ≜ (α, ϵ1 + ϵ2) (α, kϵ) Gaussian

zCDP [Bun and Steinke 2016] ρ1 + ρ2 ≜ ρ1 + ρ2 kρ Gaussian
tCDP [Bun et al. 2018] (ρ1, ω1) + (ρ2, ω2) ≜ (ρ1 + ρ2, min(ω1, ω2)) (kρ, ω) Sinh-normal

Fig. 1. Variants of Differential Privacy

0 < ϵ ′ < 1 and δ ′ > 0, the class of (ϵ,δ)-differentially private mechanisms satisfies (ϵ ′,kδ + δ ′)-
differential privacy under k-fold adaptive composition (e.g. a loop with k iterations) for ϵ ′ =

2ϵ
√

2k ln(1/δ ′).
The moments accountant was introduced by Talwar et al. [Abadi et al. 2016] specifically for

stochastic gradient descent in deep learning applications. It provides tight bounds on privacy loss
in iterative applications of the Gaussian mechanism, as in SGD.The Rényi differential privacy and
zero-concentrated differential privacy generalize the ideas behind the moments accountant.

Variants of differential privacy. In addition to ϵ and (ϵ,δ)-differential privacy, other variants
of differential privacy with significant benefits have recently been developed. Three examples are
Rényi differential privacy (RDP) [Mironov 2017], zero-concentrated differential privacy (zCDP) [Bun
and Steinke 2016], and truncated concentrated differential privacy (tCDP) [Bun et al. 2018]. Each
one has different privacy parameters and a different form of sequential composition, summarized
in Figure 1. The basic mechanism for RDP and zCDP is the Gaussian mechanism; tCDP uses a
novel sinh-normal mechanism [Bun et al. 2018] which decays more quickly in its tails. All three
can be converted to (ϵ,δ)-differential privacy, allowing them to be compared and composed with
each other. These three variants provide asymptotically tight bounds on privacy cost under com-
position, while at the same time eliminating the “catastrophic” privacy failure that can occur with
probability δ under (ϵ,δ)-differential privacy.

Group privacy. Differential privacy is normally used to protect the privacy of individuals, but
it turns out that protection for an individual also translates to (weaker) protection for groups of
individuals. A mechanism which provides pure ϵ-differential privacy for individuals also provides
kϵ-differential privacy for groups of size k [Dwork et al. 2014]. Group privacy also exists for (ϵ,δ)-
differential privacy, RDP, zCDP, and tCDP, but the scaling of the privacy parameters is nonlinear.

2.2 Related Work
Language-based approaches for differential privacy fall into two categories: approaches based on
type systems, and those based on program logics. Barthe et al. [Barthe et al. 2016d] provide a
survey. The type-system based approaches are most related to our work, but program-logic-based
approaches have also received considerable attention in recent years [Barthe et al. 2016b,c, 2013;
Barthe and Olmedo 2013; Sato 2016; Sato et al. 2019].

Linear Type Systems. Type-system-based solutions to proving that a program adheres to dif-
ferential privacy began with Reed and Pierce’s Fuzz language [Reed and Pierce 2010], which is
based on linear typing. Fuzz, as well as subsequent work based on linear types aided by SMT
solvers [Gaboardi et al. 2013], supports type inference of privacy bounds with type-level depen-
dency and higher-order composition of programs. However, these systems only support the origi-
nal and most basic variant of differential privacy called ϵ-differential privacy. More recent variants,
like (ϵ,δ)-differential privacy [Dwork et al. 2014] and others [Bun et al. 2018; Bun and Steinke 2016;
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Mironov 2017], improve on ϵ-differential privacy by providing vastly more accurate answers for
the same amount of privacy “cost” (at the expense of introducing a negligible chance of failure).
As described by Azevedo de Amorim et al. [de Amorim et al. 2018], encoding (ϵ,δ)-differential

privacy in linear type systems like Fuzz is particularly challenging because these systems place
restrictions on the interpretation of the linear function space, and (ϵ,δ)-differential privacy does
not satisfy these restrictions. In particular, using Fuzz requires that the desired notion of privacy
can be recovered from an instantiation of function sensitivity for an appropriately defined metric
on probabilistic functions. No such metric can be defined for (ϵ,δ)-differential privacy, preventing
a straightforward interpretation of linear functions as (ϵ,δ)-differentially private functions.

In their work, Azevedo de Amorim et al. [de Amorim et al. 2018] define a path construction to
encode non-linear scaling via an indexed probability monad, which can be used to extend Fuzz
with support for arbitrary relational properties (including (ϵ,δ)-differential privacy). However,
this approach (1) internalizes the use of group privacy [Dwork et al. 2014] which in many cases
provides sub-optimal bounds on privacy cost–and (2) is unable to provide privacy bounds for more
than one input to a function–a useful capability of the original Fuzz language, and a necessary
feature to obtain optimal privacy bounds for multi-argument functions.

Higher-order Relational Type Systems. Following the initial work on linear typing for differential
privacy [Reed and Pierce 2010], a parallel line of work [Barthe et al. 2016a, 2015] leverages rela-
tional refinement types aided by SMT solvers in order to support type-level dependency of privacy
parameters (à la DFuzz [Gaboardi et al. 2013]) in addition to more powerful variants of differential
privacy such as (ϵ,δ)-differential privacy.These approaches support (ϵ,δ)-differential privacy, but
did not support usable type inference until a recently proposed heuristic bi-directional type sys-
tem [Çiçek et al. 2018]. Although a direct case study of bidirectional type inference for relational
refinement types has not yet been applied to differential privacy, the possibility of such a system
appears promising.
The overall technique for supporting (ϵ,δ)-differential privacy in these relational refinement

type systems is similar to (and predates) Azevedo de Amorim et al.–privacy cost is tracked through
an “effect” type, embodied by an indexed monad. It is this “effect”-based treatment of privacy cost
that fundamentally limits these type system to not support multi-arity functions, resulting in non-
optimal privacy bounds for some programs.

First-order Relational Type Systems. Yet another approach is LightDP which uses a light-weight
relational type system to verify (ϵ,δ)-differential privacy bounds of first-order imperative pro-
grams [Zhang and Kifer 2017], and is suitable for verifying low-level implementations of differen-
tially private mechanisms. A notable achievement of this work is a lightweight, automated verifica-
tion of the Sparse Vector Technique [Dwork et al. 2014] (SVT). However, LightDP is not suitable for
sensitivity analysis, an important component of differentially-private algorithm design. Differen-
tial privacy mechanisms often require knowledge of (or place restrictions on) function sensitivity
of arguments to themechanism. In principle, a language like Fuzz could be combined with LightDP
to fully verify both an application which uses SVT, as well as the implementation of SVT itself.

Type Systems Enriched with Program Logics. At a high level, Fuzzi [Zhang et al. 2019] has a sim-
ilar aim to Duet: supporting differential privacy for general-purpose programs and supporting
recent variants of differential privacy. Duet is designed primarily as a fully-automated type sys-
tem with a rich set of primitives for vector-based and higher-order programming; low-level mech-
anisms in Duet are opaque and trusted. On the other hand, Fuzzi is designed for general-purpose
programming, low-level mechanism implementation, and their combination; however, to achieve
this, Fuzzi has less support for higher-order programming and automation in typechecking.
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SA HO DT MA Rel-ext ϵ -DP (ϵ, δ )-DP Rényi/zCDP/tCDP SVT-imp
Fuzz [Reed and Pierce 2010] ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

DFuzz [Gaboardi et al. 2013] ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

PathC [de Amorim et al. 2018] ✓ ✓ ✗1 ✗ ✓ ✓ ✓ ✓
2 ✗

HOARe2 [Barthe et al. 2015] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
2 ✗

LightDP [Zhang and Kifer 2017] ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓
2

✓

Fuzzi [Zhang et al. 2019] ✓ ✗ ✗1
✓ ✓ ✓ ✓ ✓ ✓

Duet ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Fig. 2. Legend: SA = capable of sensitivity analysis; HO = support for higher order programming, program composi-
tion, and compound datatypes; DT = support for dependently typed privacy bounds; MA = support for distinct privacy
bounds of multiple input arguments; Rel-ext = supports extensions to support non-differential-privacy relations; ϵ -DP =
supports ϵ -differential-privacy; (ϵ, δ )-DP = supports (ϵ, δ )-differential-privacy; Rényi/zCDP/tCDP: supports Rényi, zero-
concentrated and truncated concentrated differential privacy; SVT-imp: supports verified implementation of the sparse
vector technique. 1: This limitation is not fundamental and could be supported by simple extension to underlying type
theory. 2: Not described in prior work, but could be achieved through a trivial extension to existing support for (ϵ, δ )-
differential privacy.

2.3 Our Approach
We show the strengths and limitations of Duet in relation to approaches from prior work in Fig-
ure 2. In particular, strengths of Duet w.r.t. prior work are: (1) Duet supports sensitivity analysis
in combination with higher order programming, program composition, and compound datatypes,
building on ideas from Fuzz (SA+HO); (2) Duet supports type-level dependency on values, which
enables differentially private algorithms to be verified w.r.t. symbolic privacy parameters, build-
ing on ideas from DFuzz (DT); (3) Duet supports calculation of independent privacy costs for
multiple program arguments via a novel approach (MA); and (4) Duet supports (ϵ,δ)-differential
privacy—in addition to other recent powerful variants, such as Rényi, zero-concentrated and trun-
cated concentrated differential privacy—via a novel approach ((ϵ,δ)-DP, Rényi/ZC/TC)).
In striking this balance, Duet comes with known limitations: (1) Duet is not easy to extendwith

new relational properties (Rel-ext); and (2) Duet is not suitable for verifying implementations of
low-level mechanisms, such as the implementation of advanced composition, gradient operations,
and the sparse-vector technique (SVT-imp).

3 DUET: A LANGUAGE FOR PRIVACY
This section describes the syntax, type system and formal properties of Duet. Our design of Duet
is the result of two key insights.

(1) Linear typing, when restricted to disallow scaling, can be a powerful foundation for enforcing
(ϵ,δ)-differential privacy. Privacy bounds in (ϵ,δ)-differential privacy do not scale linearly,
and cannot be accurately modeled by linear type systems which permit unrestricted scaling.

(2) Sensitivity and privacy cost are distinct properties, and warrant distinct type systems to enforce
them. Our design for Duet is a co-design of two distinct, mutually embedded languages: one
for sensitivity which leverages linear typing with scaling a la Fuzz, and one for privacy which
leverages linear typing without scaling and is novel in this work.

Before describing the syntax, semantics and types for each of Duet’s two languages, we first pro-
vide some context whichmotivates each design decisionmade.We do this through several small ex-
amples and type signatures drawn from state-of-the-art type systems such as Fuzz [Reed and Pierce
2010], HOARe2 [Barthe et al. 2015] and Azevedo de Amorim et al’s path construction [de Amorim
et al. 2018].
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3.1 Design Challenges
Higher-Order Programming. An important design goal of Duet is to support sensitivity analysis

of higher-order, general purpose programs. Prior work (Fuzz and HOARe2) has demonstrated ex-
actly this, and we build on their techniques. In Fuzz, the types for the higher-order map function
and a list of reals named xs looks like this:

map : (τ1 ⊸s τ2) ⊸∞ list τ1 ⊸s list τ2
xs : list R

The type of map reads: “Take as a first argument an s-sensitive function from τ1 to τ2 which map is
allowed to use as many times as it wants. Take as second argument a list of τ1, and return a result
list of τ2 which is s-sensitive in the list of τ1.” Two programs that use map might look like this:

map (λ x → x + 1) xs (1)
map (λ x → x + x) xs (2)

The Fuzz type system reports that (1) is 1-sensitive in xs , and that (2) is 2-sensitive in xs . To arrive
at this conclusion, the Fuzz type checker is essentially counting how many times x is used in
the body of the lambda, and type soundness for Fuzz means that these counts correspond to the
semantic property of function sensitivity.
In HOARe2 the type for map is instead:

map : (∀s ′. {x :: τ1 | Dτ1(x◁,x▷) ≤ s ′} → {y :: τ2 | Dτ2(y◁,y▷) ≤ s · s ′})
→ ∀s ′. {xs :: list τ1 | D(l ist τ1)(xs◁,xs▷) ≤ s ′} → {y :: list τ2 | D(l ist τ2)(ys◁,ys▷) ≤ s · s ′}

This type for map means the same thing as the Fuzz type shown above, and HOARe2 likewise
reports that (1) is 1-sensitive and (2) is 2-sensitive, each in xs , and where Dτ is some family of
distance metrics indexed by types τ . To arrive at this conclusion, HOARe2 generates relational
verification conditions (where, e.g., x◁ is drawn from a hypothetical “first/left run” of the program,
and x▷ is drawn from a hypothetical “second/right run” of the program) which are discharged by
an external solver (e.g., SMT). In this approach, sensitivity is not concluded via an interpretation of
a purely syntactic type system (e.g., linear typing in Fuzz), rather the relational semantic property
of sensitivity (and its scaling) is embedded directly in the relational refinements of higher-order
function types.
In designing Duet, we follow the design of Fuzz in that programs adhere to a linear type dis-

cipline, i.e., the mechanics of our type system is based on counting variables and (in some cases)
scaling, and we prove a soundness theorem that says well-typed programs are guaranteed to be
sensitive/private programs. Our type for map is identical to the one shown above for Fuzz.

Non-Linear Scaling. Fuzz encodes an ϵ-differentially private function as an ϵ-sensitive function
which returns a monadic type ⃝ τ . The Laplace differential privacy mechanism is then encoded
in Fuzz as an ϵ-sensitive function from R to ⃝ R:

laplace : R⊸ϵ ⃝ R
Because the metric on distributions for pure ϵ-differential privacy scales linearly, laplace can be
applied to a 2-sensitive argument to achieve 2ϵ-differential privacy, e.g.:

laplace (x + x)

gives 2ϵ-differential privacy for x . Addingmore advanced variants of differential privacy like (ϵ,δ)
to Fuzz has proved challenging because these variants do not scale linearly. Azevedo de Amorim
et al’s path construction successfully adds (ϵ,δ)-differential privacy to Fuzz by tracking privacy
“cost” as an index on the monadic type operator ⃝ϵ,δ . However, in order to interpret a function
application like the one shown, the group privacy property for (ϵ,δ)-differential privacy must be
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used, which results in undesirable non-linear scaling of the privacy cost. The derived bound for
this program using group privacy (for k = 2) is not (2ϵ, 2δ) but (2ϵ, 2eϵδ) [Dwork et al. 2014]. As a
result, achieving a desired ϵ and δ by treating an s-sensitive function as 1-sensitive and leveraging
group privacy requires adding much more noise than simply applying the Gaussian mechanism
with a sensitivity of s .

In HOARe2, the use of scaling which might warrant the use of group privacy is explicitly dis-
allowed in the stated relational refinement type. This is in contrast to sensitivity, which likewise
must explicitly allow arbitrary scaling. The type for gauss in HOARe2 (the analogous mechanism
to laplace in the (ϵ,δ)-differential privacy setting) is written:

gauss : {x :: R | DR(x◁,x▷) ≤ 1} → Mϵ,δ R

Notice the assumed sensitivity of x to be bounded by 1, not some arbitrary s ′ to be scaled in the
output refinement (as was seen in the type for map in HOARe2 above). In this way, HOARe2 is able
to restrict uses of gauss to strictly 1-sensitive arguments, a restriction that is not possible in a pure
linear type system where arbitrary program composition is allowed and interpreted via scaling.
In Duet, we co-design two languages which are mutually embedded inside one another. The

sensitivity language is nearly identical to Fuzz, supports arbitrary scaling, and is never interpreted
to mean privacy. The privacy language is also linearly typed, but restricts function call parameters
to be strictly 1-sensitive—a property established in the sensitivity fragment. The gauss mechanism
in Duet is (essentially) given the type:

gauss : R@⟨ϵ,δ⟩⊸∗
R

where ⊸∗ is the function space in Duet’s privacy language, and the annotation @⟨ϵ,δ⟩ tracks
the privacy cost of that argument following a linear typing discipline.

Multiple Private Parameters. Both HOARe2 and the path construction track (ϵ,δ)-differential pri-
vacy via an indexedmonadic type, notatedMϵ,δ and⃝ϵ,δ respectively. E.g., a program that returns
an (ϵ,δ)-differentially private real number has the type Mϵ,δ (R) in HOARe2. These monadic ap-
proaches to privacy inherently follow an “effect” type discipline, and as a result the monad index
must track the sum total of all privacy costs to any parameter . For example, a small program that
takes two parameters, applies a mechanism to enforce differential privacy for each parameter, and
adds them together, will report a double-counting of privacy cost. E.g., in this HOARe2 program
(translated to Haskell-ish “do”-notation):

let f = λ x y → do { r1 ← дaussϵ,δ x ; r2 ← дaussϵ,δ y ; return (r1 + r2) }

The type of f in HOARe2 reports that it costs (2ϵ, 2δ) privacy:
f : {x :: R | DR(x◁,x▷) ≤ 1} → {y :: R | DR(y◁,y▷) ≤ 1} → M2ϵ,2δ R

This bound is too conservative in many cases: it is the best bound in the case that f is applied to the
same variable for both arguments (e.g., in f a a), however, if f is applied to different variables (e.g.,
in f a b) then a privacy cost of (2ϵ, 2δ) is still claimed, interpreted as for either or both variables
2ϵ, 2δ privacy is consumed. A better accounting of privacy in this second case should report (ϵ,δ)-
differential privacy independently for both variables a and b, and such accounting is not possible
in either HOARe2 or the path construction.
In Duet, we track privacy following a co-effect discipline (linear typing without scaling), as

opposed to an effect discipline, in order to distinguish privacy costs independently for each variable.
The type of the above program in Duet is:

f : (R@⟨ϵ,δ⟩,R@⟨ϵ,δ⟩) ⊸∗
R
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indicating that f “costs” (ϵ,δ) for each parameter independently, and only when f is called with
two identical variables as arguments are they combined as (2ϵ, 2δ).
Due to limitations of linear logic in the absence of scaling, privacy lambdas must be multi-

argument in the core design of Duet—they cannot be recovered by single-argument lambdas. As
a consequence, our privacy language is not Cartesian closed.

3.2 Duet by Example
Sensitivity. Duet consists of two languages: one for tracking sensitivities (typeset in green),

and one for tracking privacy cost (typeset in red). The sensitivity language is similar to that of
DFuzz [Gaboardi et al. 2013]; its typing rules track the sensitivity of each variable by annotating
the context. For example, the expression x+x is 2-sensitive in x ; the typing rules in Figure 4 allow
us to conclude:

{x :2 R} ⊢ x + x : R

In this case, the context {x :2 R} tells us that the expression is 2-sensitive in x . The same idea
works for functions; for example:

∅ ⊢ λx : R⇒ x + x : R⊸2 R

Here, the context is empty; instead, the function’s sensitivity to its argument is encoded in an
annotation on its type (the 2 in R⊸2 R). Applying such a function to an argument scales the
sensitivity of the argument by the sensitivity of the function. This kind of scaling is appropriate
for sensitivities, and even has the correct effect for higher-order functions. For example:

{y :2 R} ⊢ (λx : R⇒ x + x) y : R
{y :4 R} ⊢ (λx : R⇒ x + x) (y + y) : R
{y :4 R, z :2 R} ⊢ (λx : R⇒ x + x) (y + y + z) : R
{y :1 R} ⊢ λx : R⇒ y : R⊸0 R

{y :1 R, z :0 R} ⊢ (λx : R⇒ y) z : R
{y :2 R, z :0 R} ⊢ (λ f : R⊸0 R⇒ (f z) + (f z)) (λx : R⇒ y) : R

Privacy. Differentially private mechanisms like the Gaussian mechanism [Dwork et al. 2014]
specify how to add noise to a function with a particular sensitivity in order to ensure differential
privacy. In Duet, such mechanisms form the interface between the sensitivity language and the
privacy language. For example:

{x :ϵ,δ R} ⊢ gauss[R+[2.0], ϵ,δ ] <x> {x + x} : R

In a gauss expression, the first three elements (inside the square brackets) represent the maximum
allowed sensitivity of variables in the expression’s body, and the desired privacy parameters ϵ and
δ . The fourth element (here, <x>) is a list of variables whose privacy we are interested in tracking.
Variables not in this list will be assigned infinite privacy cost.

The value of the gauss expression is the value of its fifth element (the “body”), plus enough
noise to ensure the desired level of privacy. The body of a gauss expression is a sensitivity expres-
sion, and the gauss expression is well-typed only if its body typechecks in a context assigning a
sensitivity to each variable of interest which does not exceed the maximum allowed sensitivity.
For example, the expression gauss[R+[1.0], ϵ,δ ] <x> {x + x} is not well-typed, because x + x is
2-sensitive in x , but the maximum allowed sensitivity is 1.

Privacy expressions like the example above are typed under a privacy context which records
privacy cost for individual variables. The context for this example ({x :ϵ,δ R}) says that the expres-
sion provides (ϵ,δ)-differential privacy for the variable x . Tracking privacy costs using a co-effect
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discipline allows precise tracking of the privacy cost for programs with multiple inputs:
{x :ϵ,δ R,y :ϵ,δ R} ⊢ gauss[R+[1.0], ϵ,δ ] <x ,y> {x + y} : R

The Bind rule encodes the sequential composition property of differential privacy. For example:
{x :2ϵ,2δ R} ⊢

v1 ← gauss[R+[1.0], ϵ,δ ] <x> {x} ;
v2 ← gauss[R+[1.0], ϵ,δ ] <x> {x} ;
return v1 +v2

: R

{x :ϵ,δ R,y :ϵ,δ R} ⊢
v1 ← gauss[R+[1.0], ϵ,δ ] <x> {x} ;
v2 ← gauss[R+[1.0], ϵ,δ ] <y> {y} ;
return v1 +v2

: R

In the example on the left, the Gaussian mechanism is applied to x twice, so the total privacy cost
for x is (2ϵ, 2δ). In the example on the right, x andy are each used once, and their privacy costs are
tracked separately. The Return rule provides a second interface between the sensitivity and privacy
languages: a return expression is part of the privacy language, but its argument is a sensitivity
expression. The value of a return expression is exactly the value of its argument, so the variables
used in its argument are assigned infinite privacy cost. return expressions are therefore typically
used to compute on values which are already differentially private (like v1 and v2 above), since
infinite privacy cost is not a problem in that case.

Gradient descent. Machine learning problems are typically defined in terms of a loss function
L(θ ;X ,y) on a model θ , training samples X = (x1,x2, ...,xn) (in which each sample is typically
represented as a feature vector) and corresponding labels y = (y1,y2, ...,yn ) (i.e. the prediction
target). The training task is to find a model θ̂ which minimizes the loss on the training samples (i.e.
θ̂ = argminθL(θ ;X ,y).

One solution to the training task is gradient descent, which starts with an initial guess for θ
and iteratively moves in the direction of an improved θ until the current setting is close to θ̂ . To
determine which direction to move, the algorithm evaluates the gradient of the loss, which yields
a vector representing the direction of greatest increase in L(θ ;X ,y). Then, the algorithm moves
in the opposite direction.
To ensure differential privacy for gradient-based algorithms, we need to bound the sensitiv-

ity of the gradient computation. The gradients for many kinds of convex loss functions are 1-
Lipschitz [Wu et al. 2017]: if each sample in X = (x1, ...,xn) has bounded L2 norm (i.e. ∥xi ∥2 ≤ 1),
then for all models θ and labelings y, the gradient ∇(θ ;X ,y) has L2 sensitivity bounded by 1. For
now, we will assume the existence of a function called gradient with this property (more details
in Section 4).

gradient : MU
L2[1,n] R⊸∞ MU

L∞[m,n] D⊸ 1

m
M

U
L∞[m, 1] D⊸ 1

m
M

U
L2[1,n] R

The function’s arguments are the current θ , am × n matrix X containing n training samples, and
a 1 × n matrix y containing the corresponding labels. In Duet, the typeMU

L∞[m,n] D represents a
m×nmatrix of discrete real numbers; neighboring matrices of this type differ arbitrarily in a single
row. The function’s output is a new θ of type MU

L2[1,n] R, representing a matrix of real numbers
with bounded L2 sensitivity (see Section 4 for details on matrix types). We can use the gradient
function to implement a differentially private gradient descent algorithm:

noisy-gradient-descent(X ,y,k, ϵ,δ) ≜
let θ0 = zeros (cols X1) in
loop[δ ′] k on θ0 <X1,y> {t ,θ ⇒

дp ← mgauss[ 1
m
, ϵ,δ ] <X ,y> {gradient θ X y} ;

return θ − дp }
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The arguments to our algorithm are the training data (X and y), the desired number of iterations
k , and the privacy parameters ϵ and δ . The first line constructs an initial model θ0 consisting of
zeros for all parameters. Lines 2-4 represent the iterative part of the algorithm: k times, compute
the gradient of the loss on X and y with respect to the current model, add noise to the gradient
using the Gaussian mechanism, and subtract the gradient from the current model (thus moving in
the opposite direction of the gradient) to improve the model.
The typing rules presented in Figure 4 allow us to derive a privacy bound for this algorithm

which is equivalent to manual proof of Bassily et al. [Bassily et al. 2014b]. Based on the type of the
gradient function, the⊸-E rule allows us to conclude that the gradient operation is 1

m
-sensitive in

the training data, which is reflected by the sensitivity annotations in the context:
{θ :∞ τ1,X : 1

m
τ2,y : 1

m
τ3} ⊢ gradient θ X y : MU

L2[1,n] R

where τ1 = MU
L2[1,n] R

τ2 = MU
L∞[m,n] D

τ3 = MU
L∞[m, 1] D

Next, the MGauss rule represents the use of the Gaussian mechanism, and transitions from the sen-
sitivity language (implementing the gradient) to the privacy language (in which we use the noisy
gradient). The rule allows us to conclude that since the sensitivity of the gradient computation is
1
m
, our use of the Gaussian mechanism satisfies (ϵ,δ)-differential privacy. This context is a privacy

context, and its annotations represent privacy costs rather than sensitivities.

{θ :∞ τ1,X :⟨ϵ,δ ⟩ τ2,y :⟨ϵ,δ ⟩ τ3} ⊢ mgauss[
1

m
, ϵ,δ ] <X ,y> {gradient θ X y} : MU

L2[1,n] R

Finally, the Loop rule for advanced composition allows us to derive a bound on the total privacy
cost of the iterative algorithm, based on the number of times the loop runs:
{θ :∞ τ1,X :⟨ϵ ′,kδ+δ ′⟩ τ2,y :⟨ϵ ′,kδ+δ ′⟩ τ3} ⊢ loop[δ ′] k on θ0 <X1,y> {t ,θ ⇒ ...} : MU

L2[1,n] R

where ϵ ′ = 2ϵ
√

2k log(1/δ ′)

Variants of Differential Privacy. The typing rules presented in Figure 4 are specific to (ϵ,δ)-
differential privacy, but the same framework can be easily extended to support the other variants
described in Figure 1. New variants can be supported by making three simple changes: (1) Modify
the privacy cost syntax p to describe the privacy parameters of the new variant; (2) Modify the
sum operator + to reflect sequential composition in the new variant; and (3) Modify the typing
for basic mechanisms (e.g. gauss) to reflect corresponding mechanisms in the new variant. The
extended version of this paper [Near et al. 2019] includes typing rules for the variants in Figure 1.

As an example, considering the following variant of the noisy gradient descent algorithm pre-
sented earlier, but with ρ-zCDP instead of (ϵ,δ)-differential privacy. There are only two differ-
ences: the loop construct under zCDP has no δ ′ parameter, since standard composition yields
tight bounds, and the mgauss construct has a single privacy parameter (ρ) instead of ϵ and δ .

noisy-gradient-descent(X ,y,k, ρ) ≜
let θ0 = zeros (cols X1) in
loop k on θ0 <X1,y> {t ,θ ⇒

дp ← mgauss[ 1
m
, ρ] <X ,y> {gradient θ X y} ;

return θ − дp }

Typechecking for this version proceeds in the same way as before, with the modified typing rules;
the resulting privacy context gives both X and y a privacy cost of kρ.
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Mixing Variants. Duet allows mixing variants of differential privacy in a single program. For
example, the total privacy cost of an algorithm is often given in (ϵ,δ) form, to enable comparing
the costs of different algorithms; we can use this feature of Duet to automatically derive the cost
of our zCDP-based gradient descent in terms of ϵ and δ .

noisy-gradient-descent(X ,y,k, ρ,δ) ≜
let θ0 = zeros (cols X1) in
ZCDP [δ ] { loop k on θ0 <X1,y> {t ,θ ⇒

дp ← mgauss[ 1
m
, ρ] <X ,y> {gradient θ X y} ;

return θ − дp } }

The ZCDP {...} construct represents embedding a mechanism which satisfies ρ-zCDP in another
mechanism which provides (ϵ,δ)-differential privacy. The rule for typechecking this construct
encodes the property that if a mechanism satisfies ρ-zCDP, it also satisfies (ρ + 2

√

ρ log(1/δ),δ)-
differential privacy [Bun and Steinke 2016]. Using this rule, we can derive a total privacy cost for
the gradient descent algorithm in terms of ϵ and δ , but using the tight bound on composition that
zCDP provides.

{X :⟨ϵ ′,δ ⟩ τ2,y :⟨ϵ ′,δ ⟩ τ3,k :∞ τ4, ρ :∞ τ5} ⊢ noisy-gradient-descent(X ,y,k, ρ,δ) : MU
L2[1,n] R

where ϵ ′ = kρ + 2
√

kρ log(1/δ), τ3 = R+[k], and τ5 = R+[ρ]

We might also want to nest these conversions. For example, when the dimensionality of the train-
ing data is very small, the Laplace mechanismmight yield more accurate results than the Gaussian
mechanism (due to the shape of the distribution). To use the Laplace mechanism in an iterative
algorithm which satisfies zCDP, we can use the fact that any ϵ-differentially private mechanism
also satisfies 1

2ϵ
2-zCDP; by nesting conversions, we can determine the total cost of the algorithm

in terms of ϵ and δ .
noisy-gradient-descent(X ,y,k, ϵ,δ) ≜
let θ0 = zeros (cols X1) in
ZCDP [δ ] { loop k on θ0 <X1,y> {t ,θ ⇒

дp ← EPS_DP { mlaplace[ 1
m
, ϵ] <X ,y> {gradient θ X y} } ;

return θ − дp } }
{X :⟨ϵ ′,δ ⟩ τ2,y :⟨ϵ ′,δ ⟩ τ3,k :∞ R

+, ρ :∞ R
+} ⊢ noisy-gradient-descent(X ,y,k, ϵ,δ) : MU

L2[1,n] R

where ϵ ′ = 1
2kϵ

2 + 2
√

1
2kϵ

2 log(1/δ)

Such nestings are sometimes useful in practice: in Section 5, we will define a variant of the Private
Frank-Wolfe algorithm which uses the exponential mechanism (which satisfies ϵ-differential pri-
vacy) in a loop for which composition is performed with zCDP, and report the total privacy cost
in terms of ϵ and δ .

Contextual Modal Types. A new problem arises in the design of Duet governing the interaction
of sensitivity and privacy languages: in general—and for very good reasons which are detailed in
the next section—let-binding intermediate results in the privacy language doesn’t always preserve
typeability. Not only is let-binding intermediate results desirable for code readability, it can often
be essential in order to achieve desirable performance. Consider a loop body which performs an
expensive operation that does not depend on the inner-loop parameter:

λ xs θ0 → loop k times on θ0 { θ →
gaussϵ,δ (f (expensive xs) θ)) }
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m,n ∈ N r ∈ R ṙ , ϵ,δ ∈ R+ x ,y ∈ var
s ∈ sensF ṙ | ∞ p ∈ privF ϵ,δ | ∞

τ ∈ type F N | R | N[n] | R+[ṙ ] | box[Γs ] τ numeric and box
| τ ⊸s τ | (τ@p, ...,τ@p) ⊸∗ τ functions

Γs ∈ tcxts ≜ var⇀ sens × typeF {x :s τ , ...,x :s τ } sens. contexts
Γp ∈ tcxtp ≜ var⇀ priv × typeF {x :p τ , ...,x :p τ } priv. contexts

es ∈ exps F N[n] | N[ṙ ] | n | r | real e numeric literals
| e + e | e − e | e · e | 1/e | e mod e arithmetic
| x | let x = e in e | e e let/sens. app.
| sλ x : τ ⇒ e | pλ (x : τ , ...,x : τ )⇒ e sens./priv. fun.
| box e | unbox e sensitivity capture

ep ∈ expp F return e | x ← e ; e | e(e, ..., e) ret/bind/priv. app.
| loop[e] e on e <x , ...,x> {x ,x ⇒ e} finite iteration
| gauss[e, e, e] <x , ...,x> {e} gaussian noise

Fig. 3. Core Types and Terms

A simple refactoring achieves much better performance:
λ xs θ0 → let temp = expensive xs in

loop k times on θ0 { θ →
gaussϵ,δ (f temp θ) }

However instead of providing (ϵ,δ)-differential privacy for xs , as was the case before the refactor,
the new program provides (ϵ,δ)-differential privacy for temp—an intermediate variable we don’t
care about—and makes no guarantees of privacy for xs .
To accommodate this pattern we borrow ideas from contextual modal type theory [Nanevski

et al. 2008] to allow “boxing” a sensitivity context, and “unboxing” that context at a later time. In
terms of differential privacy, the argument that the above loop is differentially private relies on the
fact that temp ≡ expensive(xs) is 1-sensitive in xs (assuming expensive is 1-sensitive), a property
which is lost by the typing rule for let in the privacy language. We therefore “box” this sensitivity
information outside the loop, and “unbox” it inside the loop, like so:

λ xs θ0 → let temp = box (expensive xs) in
loop k times on θ0 { θ →

gaussϵ,δ (f (unbox temp) θ) }

In this example, the type of temp is a □[xs@1] data (a “box of data 1-sensitive in xs”) indicating
that when unboxed, temp will report 1-sensitivity w.r.t xs , not temp. f is then able to make good
on its promise to gauss that the result of f is 1-sensitive in xs (assuming f is 1-sensitive in its first
argument), and gauss properly reports its privacy “cost” in terms of xs , not temp.

We use exactly this pattern in many of our case studies, where expensive is a pre-processing
operation on the input data (e.g., clipping or normalizing), and f is a machine-learning training op-
eration, such as computing an improvedmodel based on the current model θ and the pre-processed
input data temp.

3.3 Duet Syntax & Typing Rules
Figure 3 shows a core subset of syntax for both languages.We only present the privacy fragment for
(ϵ,δ)-differential privacy in the core formalism, although support for other variants (and combined
variants) is straightforward as sketched in the previous section. See the extended version of this
paper [Near et al. 2019] for the complete presentation of the full language including all advanced
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Γ ⊢ e : τ

Nat

⊢ n : N

Real

⊢ r : R

Singleton Nat

⊢ N[n] : N[n]

Singleton Real

⊢ R+[ṙ ] : R+[ṙ ]

Real-S
Γ ⊢ e : N[n]

⊢ real e : R+[n]

Real-D
Γ ⊢ e : N

Γ ⊢ real e : R
Times-DS
Γ1 ⊢ e1 : R Γ2 ⊢ e2 : R+[ṙ ]

ṙΓ1 ⊢ e1 · e2 : τ

Mod-DS
Γ1 ⊢ e1 : R Γ2 ⊢ e2 : R+[ṙ ]

⌉Γ1 ⌈ṙ ⊢ e1 mod e2 : τ

Var

{x :1 τ } ⊢ x : τ
Let
Γ1 ⊢ e1 : τ1 Γ2 ⊎ {x :s τ1} ⊢ e2 : τ2

sΓ1 + Γ2 ⊢ let x = e1 in e2 : τ2

⊸-I
Γ ⊎ {x :s τ1} ⊢ e : τ2

Γ ⊢ (λ x : τ1 ⇒ e) : τ1 ⊸s τ2
⊸-E
Γ1 ⊢ e1 : τ1 ⊸s τ2 Γ2 ⊢ e2 : τ1

Γ1 + sΓ2 ⊢ e1 e2 : τ2

⊸∗-I
Γ ⊎ {x1 :p1 τ1, ...,xn :pn τn } ⊢ e : τ

⌉Γ⌈∞ ⊢ (pλ (x1 : τ1, ...,xn : τn)⇒ e) : (τ1@p1, ...,τn@pn) ⊸
∗ τ

Box-I
Γ ⊢ e : τ

⊢ box e : box[Γ] τ

Box-E
Γ ⊢ e : box[Γ′] τ

Γ + Γ′ ⊢ unbox e : τ

Sub
Γ1 ⊢ e : τ Γ1 ≤ Γ2

Γ2 ⊢ e : τ

Γ ⊢ e : τReturn
Γ ⊢ e : τ

⌉Γ⌈∞ ⊢ return e : τ

Bind
Γ1 ⊢ e1 : τ1 Γ2 ⊎ {x :∞ τ1} ⊢ e2 : τ2

Γ1 + Γ2 ⊢ x ← e1 ; e2 : τ2
⊸∗-E
Γ ⊢ e : (τ1@p1, ...,τn@pn) ⊸

∗ τ ⌉Γ1 ⌈1 ⊢ e1 : τ1 ··· ⌉Γn ⌈1 ⊢ en : τn

⌉Γ⌈∞ + ⌉Γ1 ⌈p1 + ···+ ⌉Γn ⌈pn ⊢ e(e1, ..., en) : τ
Loop (Advanced Composition)

Γ1 ⊢ e1 : R+[δ ′] Γ2 ⊢ e2 : N[n] Γ3 ⊢ e3 : τ Γ4 + ⌉⌊Γ′4⌋⌈
ϵ,δ
{x ′

1
, ...,x ′n }

⊎ {x1 :∞ N,x2 :∞ τ } ⊢ e4 : τ

⌉Γ3 ⌈∞ + ⌉Γ4 ⌈∞ + ⌉⌊Γ′4⌋⌈
2ϵ
√
2n ln(1/δ ′),δ ′+nδ

{x ′
1
, ...,x ′n }

⊢ loop[e1] e2 on e3 <x
′
1, ...,x

′
n> {x1,x2 ⇒ e4} : τ

Gauss
Γ1 ⊢ e1 : R+[ṙs ] Γ2 ⊢ e2 : R+[ϵ] Γ3 ⊢ e3 : R+[δ ] Γ4 + ⌉⌊Γ′4⌋⌈

ṙs
{x1, ...,xn } ⊢ e4 : R

⌉Γ4 ⌈∞ + ⌉⌊Γ′4⌋⌈
ϵ,δ
{x ′

1
, ...,x ′n }

⊢ gauss[e1, e2, e3] <x ′1, ...,x
′
n> {e4} : R

Fig. 4. Core Typing Rules

variants of differential privacy.We use color coding to distinguish between the sensitivity language,
privacy language, and shared syntax between languages. The sensitivity and privacy languages
share syntax for variables and types, which are typeset in blue. Expressions in the sensitivity
language are typeset in green, while expressions in the privacy language are typeset in red.1
Types τ include base numeric types N and R and their treatment is standard. We include single-

ton numeric typesN[n] and R+[ṙ ]; these types classify runtime numeric values which are identical
to the static indexn or ṙ , e.g.,N[n] is a type which exactly describes its runtime value as the number
n. Static reals only range over non-negative values, andwewrite ṙ for elements of the non-negative
reals R+. Singleton natural numbers are used primarily to construct matrices with some statically
known dimension, and to execute loops for some statically known number of iterations. Singleton
real numbers and are used primarily for tracking sensitivity and privacy quantities. Novel in Duet
is a “boxed” type box[Γs ] τ which delays the “payment” of a value’s sensitivity, to be unboxed and

1Colors were chosen to minimize ambiguity for colorblind persons following a colorblind-friendly palette: http://mkweb.
bcgsc.ca/colorblind/img/colorblindness.palettes.png
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“paid for” in a separate context. Boxing is discussed in more detail later in this section. The sensi-
tivity function space (a la Fuzz) is written τ1 ⊸s τ2 and encodes an s-sensitive function from τ1
to τ2. The privacy function space (novel in Duet) is written (τ1@p1, ...,τn@pn) ⊸

∗ τ and encodes
a multi-arity function that preserves pi -privacy for its ith argument. Privacy functions are multi-
arity because functions of multiple arguments cannot be recovered from iterating functions over
single arguments in the privacy language, as can be done in the sensitivity language.
In our implementation and extended presentation of Duet in the extended version of this paper,

we generalize the static representations of natural numbers and reals to symbolic expression η,
which may be arbitrary symbolic polynomial formulas including variables. E.g., suppose ϵ is a
type-level variable ranging over real numbers and x :N[ϵ], then 2x :N[2ϵ]. Our type checker knows
this is the same type as N[ϵ+ϵ] using a custom solver we implemented but do not describe in
this paper. Because the typelevel representation of a natural number can be a variable, its value is
therefore not statically determined, rather it is statically tracked via typelevel symbolic formulas.
Type contexts in the sensitivity language Γs track the sensitivity s of each free variable whereas

in the privacy language Γp they track privacy cost p. Sensitivities are non-negative reals ṙ extended
with a distinguished infinity element∞, and privacy costs are specific to the current privacymode.
In the case of (ϵ,δ)-differential privacy, p has the form ϵ,δ or∞ where ϵ and δ range over R+.

We reuse notation conventions from Fuzz for manipulating contexts, e.g., Γ1+Γ2 is partial and
defined only when both contexts agree on the type of each variable; adding contexts adds sensitivi-
ties pointwise, i.e., {x :s1+s2τ } ∈ Γ1+Γ2 when {x :s1τ } ∈ Γ1 and {x :s2τ } ∈ Γ2; and scaling contexts
scales sensitivities pointwise, i.e., {x :ss ′τ } ∈ sΓ when {x :s ′τ } ∈ Γ.

We introduce a new operation not shown in prior work called truncation and written ⌉s1⌈s2 for
truncating a sensitivity and ⌉Γ⌈s for truncating a sensitivity context, which is pointwise truncation
of sensitivities. Sensitivity truncation ⌉ ⌈s maps 0 to 0 and any other value to s:

⌉ ⌈ ∈ sens × sens→ sens ⌉s1⌈s2 ≜

{

0 if s1 = 0
s2 if s1 , 0

Truncation is defined analogously for privacies ⌉p1⌈p2 , for converting between sensitivities and
privacies ⌉s ⌈p and ⌉p⌈s , and also for liftings of these operations pointwise over contexts ⌉Γ⌈p , ⌉Γ⌈p
and ⌉Γ⌈s . Sensitivity truncation is used for typing the modulus operator, and truncating between
sensitivities and privacies is always to ∞/∞ and appears frequently in typing rules that embed
sensitivity terms in privacy terms and vice versa.
The syntax and language features for both sensitivity and privacy languages are discussed next

alongside their typing rules. Figure 4 shows a core subset of typing rules for both languages. In
the typing rules, the languages embed within each other—sensitivity typing contexts are trans-
formed into privacy contexts and vice versa. Type rules are written in logical style with an explicit
subsumption rule, although a purely algorithmic presentation is possible (not shown) following
ideas from Azevedo de Amorim et al [De Amorim et al. 2014] which serves as the basis for our
implementation.

3.4 Sensitivity Language
Duet’s sensitivity language is similar to that of DFuzz [Gaboardi et al. 2013], except that we ex-
tend it with significant new tools for machine learning in Section 4. We do not present standard
linear logic connectives such as sums, additive products and multiplicative products (a la Fuzz),
or symbolic type-level expressions (a la DFuzz), although each are implemented in our tool and
described formally in the extended version of this paper [Near et al. 2019]. We do not formalize or
implement general recursive types in order to ensure that all Duet programs terminate. Including
general recursive types would be straightforward in Duet (following the design of Fuzz), however
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such a decision comes with known limitations. As described in Fuzz [Reed and Pierce 2010], re-
quiring that all functions terminate is necessary in order to give both sound and useful types to
primitives like set-filter. The design space for the combination of sensitivity types and nontermi-
nation is subtle, and discussed extensively in prior work [Azevedo de Amorim et al. 2017; Reed
and Pierce 2010].

Typing for literal values is immediate (Nat, Real). Singleton values are constructed using the same
syntax as their types, and where the type level representation is identical to the literal (Singleton
Nat, Singleton Real). Naturals can be converted to real numbers through the explicit conversion op-
eration real (Real-S, Real-D). For the purposes of sensitivity analysis, statically known numbers are
considered constant, and as a consequence any term that uses one is considered 0-sensitive in the
statically known term. The result of this is that the sensitivity environment Γ associated with the
subterm at singleton type is dropped from the output environment, e.g., in Real-S. This dropping is
justified by our metric space interpretation JN[n]K for statically known numbers as singleton sets
{n}, and because for all x ,y ∈ JN[n]K, x = y and therefore |x − y | = 0.
Type rules for arithmetic operations are given in multiple variations, depending on whether or

not each argument is tracked statically or dynamically. We show only the rule for multiplication
when the left argument is dynamic and the right argument is static (Times-DS). The resulting sensitiv-
ity environment reports the sensitivities of e1 scaled by ṙ—the statically known value of e2—and
the sensitivities for e2 are not reported because its value is fixed and cannot vary, as discussed
above. When both arguments are dynamic, the resulting sensitivity environment is ∞(Γ1 + Γ2),
i.e., all potentially sensitive variables for each expression are bumped to infinity. The modulus op-
eration is similar to multiplication in that we have cases for each variation of static or dynamic
arguments, however the context is truncated rather than scaled in the case of one singleton-typed
parameter; we show only this static-dynamic variant in the figure (Mod-DS).
Typing for variables (Var) and functions (⊸-I, ⊸-E) is the same as in Fuzz: variables are reported

in the sensitivity environment with sensitivity 1; and closures are created by annotating the arrow
with the sensitivity s of the argument in the body, and by reporting the rest of the sensitivities Γ
from the function body as the sensitivity of whole closure as a whole; and function application
scales the argument by the function’s sensitivity s .
The first new (w.r.t. DFuzz) term in our sensitivity language is the privacy lambda. Privacy lamb-

das are multi-arity (as opposed to single-arity sensitivity lambdas) because the privacy language
does not support currying to recover multi-argument functions. Privacy lambdas are created in
the sensitivity language with pλ (x : τ , ...,x : τ )⇒ e and applied in the privacy language with
e(e, ..., e). The typing rule for privacy lambdas (⊸∗-I) types the body of the lambda in a privacy
type context extended with its formal parameters, and the privacy cost of each parameter is an-
notated on its function argument type. Unlike sensitivity lambdas, the privacy cost of variables in
the closure environment are not preserved in the resulting typing judgment. The reason for this is
twofold: (1) the final “cost” for variables in the closure environment depends on how many times
the closure is called, and in the absence of this knowledge, we must conservatively assume that it
could be called an infinite number of times, and (2) the interpretation of an ∞-sensitive function
coincides with that of an∞-private function, so we can soundly convert between∞-privacy-cost
and∞-sensitivity contexts freely using truncation.
The final two new terms in our sensitivity language are introduction and elimination forms for

“boxes” (Box-I and Box-E). Boxes have no operational behavior and are purely a type-level mecha-
nism for tracking sensitivity. The rules for box introduction capture the sensitivity context of the
expression, and the rule for box elimination pays for that cost at a later time. Boxes are reminiscent
of contextual modal type theory [Nanevski et al. 2008]—they allow temporary capture of a linear
context via boxing—thereby deferring its payment—and re-introduction of the context at later time
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via unboxing. In a linear type system that supports scaling, this boxing would not be necessary,
but it becomes necessary in our system to achieve the desired operational behavior when inter-
acting with the privacy language, which does not support scaling. E.g., in many of our examples
we perform some pre-processing on the database parameter (such as clipping) and then use this
parameter in the body of a loop. Without boxing, the only way to achieve the desired semantics
is to re-clip the input (a deterministic operation) every time around the loop—boxing allows you
to clip on the outside of the loop and remember that privacy costs should be “billed” to the initial
input.

3.5 Privacy Language
Duet’s privacy language is designed specifically to enable the composition of individual differen-
tially private computations. It has a linear type system, but unlike the sensitivity language, anno-
tations instead track privacy cost, and the privacy language does not allow scaling of these anno-
tations, that is, the notation pΓ is not used and cannot be defined. Syntax return e and x←e;e
(pronounced “bind”) are standard from Fuzz, as are their typing rules (Return, Bind), except for our
explicit conversion from a sensitivity context Γ to a privacy context Γ by truncation to infinity in
the conclusion of Return. Bind encodes exactly the post-processing property of differential privacy—
it allows e2 to use the value computed by e1 any number of times after paying for it once.

Privacy application e(e, ..., e) applies a privacy function (pλ, created in the sensitivity language)
to a sequence of 1-sensitivity arguments—the sensitivity is enforced by the typing rule. The type
rule (⊸∗-E) checks that the first term produces a privacy function and applies its privacy costs to
function arguments which are restricted by the type system to be 1-sensitive. We use truncation in
well-typed hypothesis for e1 ... en to encode the restriction that the argument must be 1-sensitive.
This restriction is crucial for type soundness—arbitrary terms cannot be given tight privacy bounds
statically due to the lack of a tight scaling operation in the model for (ϵ,δ)-differential privacy.The
same is true for other advanced variants of differential privacy.
The loop expression is for loop iteration fixed to a statically known number of iterations. The

syntax includes a list of variables (<x , ...,x>) to indicate which variables should be considered
when calculating final privacy costs, as explained shortly. The typing rule (Loop) encodes advanced
composition for (ϵ,δ)-differential privacy. e1 is the δ ′ parameter to the advanced composition
bound and e2 is the number of loop iterations—each of these values must be statically known,
which we encode with singleton types (a la DFuzz). Statically known values are fixed and their
sensitivities do not appear in the resulting context. e3 is the initial value passed to the loop, and
for which no claim is made of privacy, indicated by truncation to infinity. e4 is a loop body with
free variables x1 and x2 which will be iterated e2 times with the first variable bound to the iteration
index, and the second variable bound to the loop state, where e3 is used as the starting value. The
loop body e4 is checked in a privacy context Γ4 + ⌉⌊Γ′4⌋⌈

ϵ, δ
{x ′

1
, ...,x ′n }

, shorthand for ⌉ ⌊Γ′4⌋{x ′1, ...,x ′n } ⌈
ϵ, δ

where ⌊Γ′4⌋{x ′1, ...,x ′n } is a context restricted to only the variables x ′1, ...,x ′n . The ϵ,δ is an upper
bound on the privacy cost of the variables x ′i in the loop body, and the resulting privacy bound is
restricted to only those variables.This allows variables for which the programmer is not interested
in tracking privacy to appear in Γ4 in the premise, and the rule’s conclusion makes no claims about
privacy for these variables. We make use of this feature in all of our examples programs.
The gauss expression is a mechanism of (ϵ,δ)-differential privacy; other mechanisms are used

for other privacy variants. Like the loop expression, mechanism expressions take a list of variables
to indicate which variables should be considered in the final privacy cost. The typing rule (Gauss)
is similar in spirit to Loop: it takes parameters to the mechanism which must be statically known
(encoded as singleton types), a list of variables to consider for the purposes of the resulting privacy
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bound, and a term {e} for which there is a bound ṙ on the sensitivity of free variables x1, ...,xn . The
resulting privacy guarantee is that the term in brackets {e} is ϵ,δ differentially private. Whereas
loop and advanced composition consider a privacy term loop bodywith an upper bound on privacy
leakage, gauss considers a sensitivity term body with an upper bound on its sensitivity.

3.6 Metatheory
We denote sensitivity language terms e ∈ exp into total, functional, linear maps between metric
spaces—the same model as the terminating fragment of Fuzz. Every term in our language ter-
minates by design, which dramatically simplifies our models and proofs. This restriction poses
no issues in implementing most differentially private machine learning algorithms, because such
algorithms typically terminate in a statically determined number of loop iterations in order to
achieve a particular privacy cost.
Types in Duet denote metric spaces, as in Fuzz. We notate metric spaces D, their underlying

carrier set ∥D∥, and their distance metric |x − y |D , or |x − y | where D can be inferred from con-
text. Sensitivity typing judgments Γ ⊢ e : τ denote linear maps from a scaled cartesian product
interpretation of Γ:

J

Γ

{x1:s1τ1,...,xn :snτn} ⊢ τ K ≜ !s1Jτ1K ⊗ ··· ⊗ !sn JτnK ⊸ Jτ K

Although we do not make metric space scaling explicit in our syntax (for the purposes of effective
type inference, a la DFuzz [De Amorim et al. 2014]), scaling becomes apparent explicitly in our
model. Privacy judgments Γ ⊢ e : τ denote probabilistic, privacy preserving maps from an unscaled
product interpretation of Γ:

J

Γ

{x1:p1τ1,...,xn :pnτn} ⊢ τ K ≜ (Jτ1K@p1,...,JτnK@pn) ⊸
∗ ∥Jτ K∥

The multi-arity (ϵ,δ)-differential-privacy-preserving map is defined:
(D1@(ϵ1,δ1),...,Dn@(ϵn ,δn)) ⊸

∗ X ≜

{ f ∈ ∥D1∥ × ··· × ∥Dn ∥ → D(X )
| |xi − y |Di

≤ 1⇒ Pr[f (x1,...,xi ,...,xn) = d] ≤ eϵiPr[f (x1,...,y,...,xn) = d] + δi }
where D(X ) is a distribution over elements in X .
We give a full semantic account of typing in the extended version of this paper [Near et al. 2019],

as well as prove key type soundness lemmas, many of which appeal to well-known differential
privacy proofs from the literature.
The final soundness theorem, proven by induction over typing derivations, is that the denota-

tions for well-typed open terms es and ep in well-typed environments γs and γp are contained in
the denotation of their typing contexts Γs ⊢ τ and Γp ⊢ τ .

Theorem 3.1.
(1) If Γp ⊢ ep : τ and Γp ⊢ γp then JepK

γp ∈ JΓp ⊢ τ K
(2) If Γs ⊢ es : τ and Γs ⊢ γs then JesK

γs ∈ JΓs ⊢ τ K

A corollary is that any well-typed privacy lambda function satisfies (ϵ,δ)-differential privacy for
each of its arguments w.r.t. that argument’s privacy annotation used in typing.

4 LANGUAGE TOOLS FOR MACHINE LEARNING
Machine learning algorithms typically operate over a training set of samples, and implementations
of these algorithms often represent datasets using matrices. To express these algorithms, Duet
includes a core matrix API which encodes sensitivity and privacy properties of matrix operations.
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We add a matrix type Mc
ℓ
[m,n] τ , encode vectors as single-row matrices, and add typing rules

for gradient computations that encode desirable properties. We also introduce a type for matrix in-
dices idx[n] for type-safe indexing. These new types are shown in Figure 6, along with sensitivity
operations on matrices—encoded as library functions because their types can be encoded using ex-
isting connectives—and new matrix-level differential privacy mechanisms—encoded as primitive
syntactic forms because their types cannot be expressed using existing type-level connectives.
In the matrix typeMc

ℓ
[m,n] τ , them and n parameters refer to the number of rows and columns

in the matrix, respectively. The ℓ parameter determines the distance metric used for the matrix
metric for the purposes of sensitivity analysis; the c parameter is used to specify a norm bound on
each row of the matrix, which will be useful when applying gradient functions.

4.1 Distance Metrics for Matrices
Differentially private machine learning algorithms typically move from one distance metric on ma-
trices and vectors to another as the algorithm progresses. For example, two input training datasets
are neighbors if they differ on exactly one sample (i.e. one row of the matrix), but they may differ
arbitrarily in that row. After computing a gradient, the algorithm may consider the L2 sensitivity
of the resulting vector—i.e. two gradients д1 and д2 are neighbors if ∥д1 −д2∥2 ≤ 1. These are very
different notions of distance—but the first is required by the definition of differential privacy, and
the second is required as a condition on the input to the Gaussian mechanism.
The ℓ annotation on matrix types in Duet enables specifying the desired notion of distance

between rows. The annotation is one of L∞, L1, or L2; an annotation of L∞, for example, means
that the distance between two rows is equal to the L∞ norm of the difference between the rows.
The distance between two matrices is always equal to the sum of the distances between rows. The
distance metric for the element datatype τ determines the distance between two corresponding
elements, and the row metric ℓ specifies how to combine elementwise distances to determine the
distance between two rows.
Figure 5 presents the complete set of distance metrics for matrices, as well as real numbers and

the new domain data for elements of the D type, which is operationally a copy of R but with a
discrete distance metric. Many combinations are possible, including the following common ones:
Ex. 1: |X − X ′ |

M
U
L∞[m, n] D =

∑

i
maxj |Xi, j − X ′i, j |D

Distance is the number of rows on which X and X ′ differ ; commonly used to describe neighboring
input datasets.
Ex. 2: |X − X ′ |

M
U
L1

[m, n] R =
∑

i

∑

j
|Xi, j − X ′i, j |R

Distance is the sum of elementwise differences.
Ex. 3: |X − X ′ |

M
U
L2

[m, n] R =
∑

i

√

∑

j
|Xi, j − X ′i, j |2R

Distance is sum of the L2 norm of the differences between corresponding rows.
Ex. 4: |X − X ′ |

M
U
L2

[1, n] R =
√

∑

j
|X1, j − X ′1, j |2R

Represents a vector; distance is L2 sensitivity for vectors, as required by the Gaussian mechanism.
These distance metrics are used in the types of library functions which operate over matrices.

4.2 Matrix Operations
Figure 6 summarizes the matrix operations available in Duet’s API. We focus on the non-standard
operations which are designed specifically for sensitivity or privacy applications. For example,
fr-sens allows converting between notions of distance between rows; when converting from L2 to

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 172. Publication date: October 2019.



Duet: An Expressive Higher-Order Language and Type System for Differential Privacy 172:21

Domain Carrier: X ∈ set Metric: | − | ∈ X → X → R ⊎ {∞}
real R |r1 − r2 | ≜ |r1 − r2 |R
data R |r1 − r2 | ≜

{

0 when r1 = r2
1 when r1 , r2

matrix[n1,n2]L∞(D) M[n1,n2](∥D∥) |m1 −m2 | ≜
∑

i
maxj |m1[i, j] −m2[i, j]|D

matrix[n1,n2]L1(D) M[n1,n2](∥D∥) |m1 −m2 | ≜
∑

i, j
|m1[i, j] −m2[i, j]|D

matrix[n1,n2]L2(D) M[n1,n2](∥D∥) |m1 −m2 | ≜
∑

i

√

∑

j
|m1[i, j] −m2[i, j]|2D

Fig. 5. Distance Metrics for Matrices

ℓ ∈ normF L1 | L2 | L∞ c ∈ clipF ℓ | U τ ∈ type ≔ ... | D | idx[n] | Mc
ℓ
[n,n] τ

rows : Mc
ℓ
[m,n] τ ⊸0 N[m] convert : Mℓ

ℓ′ [m,n] D⊸1 M
U
ℓ
[m,n] R

cols : Mc
ℓ
[m,n] τ ⊸0 N[n] clipℓ : Mc

ℓ′ [m,n] D⊸1 M
ℓ
ℓ′ [m,n] D

discf : (τ ⊸∞ R) ⊸1 τ ⊸1 D fr-sensL∞ : Mc
L∞[m,n] τ ⊸√n M

c
L2
[m,n] τ

undisc : D⊸∞ R fr-sensL2 : Mc
L2
[m,n] τ ⊸√n M

c
L1
[m,n] τ

transpose : Mc
L1
[m,n] τ ⊸1 M

U
L1
[n,m] τ to-sensℓ : Mc

L1
[m,n] τ ⊸1 M

c
ℓ
[m,n] τ

mcreate : N[m] ⊸0 N[n] ⊸0 (idx[m] ⊸∞ idx[n] ⊸∞ τ ) ⊸mn M
U
L1
[m,n] τ

#[ , ] : Mc
ℓ
[m,n] τ ⊸1 idx[m] ⊸∞ idx[n] ⊸∞ τ

#[ , 7→ ] : Mc
ℓ
[m,n] τ ⊸1 idx[m] ⊸∞ idx[n] ⊸∞ τ ⊸1 M

U
ℓ
[m,n] τ

fld : (τ1 ⊸s1 τ2 ⊸s2 τ3) ⊸mn τ2 ⊸smn
2
M
c
L1
[m,n] τ1 ⊸s1 τ2

map : (τ1 ⊸s τ2) ⊸mn M
c
ℓ
[m,n] τ1 ⊸s M

U
ℓ
[m,n] τ2

fld-row : (τ1 ⊸s1 τ2 ⊸s2 τ2) ⊸m τ2 ⊸s2m M
c
ℓ
[m,n] τ1 ⊸s1 M

U
ℓ
[m, 1] τ2

map-row : (Mc1
ℓ1
[1,n1] τ1 ⊸s M

c2
ℓ2
[1,n2] τ2) ⊸m M

c1
ℓ1
[m,n1] τ1 ⊸s M

c2
ℓ2
[m,n2] τ2

L∇д
ℓ
[ ; , ] : Mℓ

ℓ′ [1,n] R⊸∞ Mℓ
ℓ′′ [1,n] D⊸1 D⊸1 M

U
ℓ
[1,n] R

U∇[ ; , ] : Mℓ
ℓ′ [1,n] R⊸∞ Mℓ′′

L∞[1,n] D⊸1 D⊸1 M
U
L∞[1,n] D

above-threshold : (Mc
ℓ
[1,n] (τ ⊸1 R)@∞, R+[ϵ]@0, τ@⟨ϵ, 0⟩, R@∞) ⊸∗ idx[n]

pfld-rows : (Mc1
L∞[m,n1] D@⟨ϵ,δ⟩, M

c2
L∞[m,n2] D@⟨ϵ,δ⟩,

((Mc1
L∞[1,n1] D@⟨ϵ,δ⟩, M

c2
L∞[1,n2] D@⟨ϵ,δ⟩, D@∞) ⊸

∗ τ )@∞,
τ@∞
) ⊸∗ τ

sample : (N[m2]@⟨0, 0⟩,
M
c
L∞[m1,n1] D@⟨2m2ϵ1/m1,m2δ1/m1⟩, Mc

L∞[m1,n2] D@⟨2m2ϵ2/m1,m2δ2/m1⟩,
((Mc

L∞[m2,n1] D@⟨ϵ1,δ1⟩, Mc
L∞[m2,n2] D@⟨ϵ2,δ2⟩) ⊸∗ τ )@∞

) ⊸∗ τ Γ ⊢ e : τMGauss
Γ1 ⊢ e1 : R+[ṙ ] Γ2 ⊢ e2 : R+[ϵ] Γ3 ⊢ e3 : R+[δ ] Γ4 + ⌉⌊Γ5⌋⌈ṙ{x1, ...,xn } ⊢ e4 : Mc

L2[m,n] R

⌉Γ1 + Γ2 + Γ3 ⌈0,0 + ⌉Γ4 ⌈∞ + ⌉Γ5 ⌈ϵ,δ ⊢ mgauss[e1, e2, e3] <x1, ...,xn> {e4} : MU
L∞[m,n] R

Exponential
Γ1 ⊢ e1 : R+[ṙ ]

Γ2 ⊢ e2 : R+[ϵ] Γ3 ⊢ e3 : Mc
ℓ
[1,m](τ ) Γ4 + ⌉⌊Γ5⌋⌈ṙ{x1, ...,xn } ⊎ {x :∞ τ } ⊢ e4 : R

⌉Γ1 + Γ2 ⌈0,0 + ⌉Γ3 + Γ4 ⌈∞ + ⌉Γ5 ⌈ϵ,0 ⊢ exponential[e1, e2] <x1, ...,xn> e3 {x ⇒ e4} : τ

Fig. 6. Matrix Typing Rules
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L1, the distance between two rowsmay increase by
√
n (by Cauchy-Schwarz), so the corresponding

version of fr-sens has a sensitivity annotation of
√
n.

undisc allows converting from discrete to standard reals, and is infinitely sensitive. discf allows
converting an infinitely sensitive function which returns a real to a 1-sensitive function returning
a discrete real; we can recover a 1-sensitive function from reals to discrete reals (disc : R⊸1 D)
by applying discf to the identity function.
above-threshold encodes the Sparse Vector Technique [Dwork et al. 2014], discussed in the ex-

tended version of this paper [Near et al. 2019]. pfld-rows encodes parallel composition of privacy
mechanisms, and is discussed in Section 5.5. sample performs random subsampling with privacy
amplification, and is discussed in Section 5.4.
Gradients are computed using L∇д

ℓ
[ ; , ] and U∇[ ; , ]. The first represents an ℓ-Lipschitz

gradient (typical in convex optimization problems like logistic regression) like the gradient func-
tion introduced in Section 3.2; it is a 1-sensitive function which produces a matrix of real numbers.
The second represents a gradient without a known Lipschitz constant (typical in non-convex opti-
mization problems, including training neural networks); it produces a matrix of discrete reals. We
demonstrate applications of both in Section 5.
In order to produce a matrix with sensitivity bound L2, L∇дL2 requires input of typeML2

ℓ
[m,n] D

for any ℓ. We obtain such a matrix by clipping, a common operation in differentially private ma-
chine learning. Clipping scales each row of a matrix to ensure its c norm (for c ∈ {L∞,L1,L2}) is
less than 1:

clipc xi ≜

{ xi
∥xi ∥c if ∥xi ∥c > 1

xi if ∥xi ∥c ≤ 1

The clipping process is encoded in Duet as clip (Figure 6), which introduces a new bound on the
c norm of its output.

4.3 Vector-Valued Privacy Mechanisms
Both the Laplace and Gaussian mechanisms are capable of operating directly over vectors; the
Laplace mechanism adds noise calibrated to the L1 sensitivity of the vector, while the Gaussian
mechanism uses its L2 sensitivity. With the addition of matrices to Duet, we can introduce typ-
ing rules for these vector-valued mechanisms, using single-row matrices to represent vectors. We
present the typing rule for MGauss in Figure 6; the rule for MLaplace is similar. We also intro-
duce a typing rule for the exponential mechanism, which picks one element out of an input vector
based on a sensitive scoring function (Figure 6, rule Exponential).

5 CASE STUDIES
In this section, we demonstrate the use of Duet to express and verify a number of different algo-
rithms for differentially private machine learning.
There are four basic approaches to differentially private convex optimization: input perturba-

tion [Chaudhuri et al. 2011], objective perturbation [Chaudhuri et al. 2011], gradient perturba-
tion [Bassily et al. 2014b; Song et al. 2013], and output perturbation [Chaudhuri et al. 2011; Wu
et al. 2017]. Of these, the latter three are known to provide competitive accuracy, and the latter two
(gradient perturbation and output perturbation) are themost widely used; our first two case studies
verify these two techniques. Our third case study verifies the noisy Frank-Wolfe algorithm [Talwar
et al. 2015], a variant of gradient perturbation especially suited to high-dimensional datasets.
Our next three case studies demonstrate the use of Duet to verify commonly-used variations on

the above algorithms, including various kinds of minibatching and a gradient clipping approach
used in deep learning. Our final three case studies explore techniques for preprocessing input
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datasets so that the preconditions of the above algorithms are satisfied. In Section 5.6, we discuss
the use of Duet to combine all of these components—many of which leverage different variants
of differential privacy—to build a complete machine learning system. Our case studies are summa-
rized in the following table.

Technique Ref. § Privacy Concept
Optimization Algorithms
Noisy Gradient Descent [Bassily et al. 2014b] 5.1 Composition
Gradient Descent w/ Output Perturbation [Wu et al. 2017] 5.2 Parallel comp. (sens.)
Noisy Frank-Wolfe [Talwar et al. 2015] 5.3 Exponential mechanism
Variations on Gradient Descent
Minibatching [Bassily et al. 2014b] 5.4 Amplification by subsampling
Parallel-composition minibatching — 5.5 Parallel composition
Gradient clipping [Abadi et al. 2016] † Sensitivity bounds
Preprocessing & Deployment
Hyperparameter tuning [Chaudhuri and Vinterbo 2013] † Exponential mechanism
Adaptive clipping — † Sparse Vector Technique
Z-Score normalization [skl 2019] † Composition
Combining All of the Above 5.6 Composition

5.1 Noisy Gradient Descent
We begin with a fully-worked version of the differentially-private gradient descent algorithm from
Section 3.2. This algorithm was first proposed by Song et al. [Song et al. 2013] and later refined by
Bassily et al. [Bassily et al. 2014b]. Gradient descent is a simple but effective training algorithm in
machine learning, and has been applied in a wide range of contexts, from simple linear models to
deep neural networks. The program below implements noisy gradient descent in Duet (without
minibatching, though we will extend it with minibatching in Section 5.4). It performs k iterations
of gradient descent, starting from an initial guess θ0 consisting of all zeros. At each iteration, the
algorithm computes a noisy gradient using noisy-grad, scales the gradient by the learning rate η,
and subtracts the result from the current model θ to arrive at the updated model.

noisy-grad(θ ,X ,y, ϵ,δ) ≜
let s = R[1.0]/real (rows X ) in
let z = zeros (cols X ) in
let дs = mmap-row (sλ Xi yi ⇒

L∇LRL2[θ ;Xi ,yi ]) X y in
let д = fld-row (sλ x1 x2 ⇒ x1 + x2) z дs in
let дs = map (sλ x ⇒ s · x) д in
mgauss[s, ϵ,δ ] <X ,y> {дs }

zeros(n) ≜ mcreateL∞ 1 n (sλ i j ⇒ 0.0)

noisy-gradient-descent(X ,y,k,η, ϵ,δ) ≜
let X1 = box (mclipL2 X ) in
let θ0 = zeros (cols X1) in
loop[δ ′] k on θ0 <X1,y> {t ,θ ⇒

дp ← noisy-grad θ (unbox X1) y ϵ δ ;
return θ − η · дp }

Under (ϵ,δ)-differential privacy, Duet derives a total privacy cost of (2ϵ
√

2k log(1/δ ′),kδ+δ ′)-
differential privacy for this implementation, which matches the total cost manually proven by
Bassily et al. [Bassily et al. 2014b]. Duet can also derive a total cost for other privacy variants: the
same program satisfies kρ-zCDP, or (α ,kϵ)-RDP.

5.2 Output Perturbation Gradient Descent
An alternative to gradient perturbation is output perturbation—adding noise to the final trained
model, rather than during the training process. Wu et al. [Wu et al. 2017] present a competitive

† Due to space constraints, these case studies appear in the extended version of this paper [Near et al. 2019].
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algorithm based on this idea, which works by bounding the total sensitivity (rather than privacy) of
the iterative gradient descent process.Their algorithm leverages parallel composition for sensitivity:
it divides the dataset into small chunks called minibatches, and each iteration of the algorithm
processes one minibatch. A single pass over all minibatches (and thus, the whole dataset) is often
called an epoch. If the dataset has sizem and each minibatch is of size b, then each epoch comprises
m/b iterations of the training algorithm. This approach to minibatching is often used (without
privacy) in deep learning. The sensitivity of a complete epoch in this technique is just 1/b.

gd-output-perturbation(xs,ys,k,η, ϵ,δ) ≜
let m0 = zeros (cols X ) in

let c = box (mclipL2 xs) in
let s = real k/real b in
mgauss[s, ϵ,δ ] <xs,ys> {
loop k on m0 { a,θ ⇒
mfold-row b,θ , unbox c,ys { θ ,xb,yb ⇒

let д = ∇LR
L2
[θ ; xb,yb] in

θ − η · д } } }

We encode parallel composition for sensitiv-
ity in Duet using the mfold-row function, de-
fined in Section 4, whose type matches that of
foldl for lists in the Fuzz type system [Reed and
Pierce 2010]. mfold-row considers each row to be
a “minibatch” of size 1, but is easily extended to
consider multiple rows at a time (as in our encod-
ing below). Duet derives a sensitivity bound of
k/b for the training process, and a total privacy
cost of (ϵ,δ)-differential privacy, matching the manual analysis of Wu et al. [Wu et al. 2017].

5.3 Noisy Frank-Wolfe

frank-wolfe X y k ϵ δ ≜

let X1 = clip-matrixL∞ X in
let d = cols X in
let θ0 = zeros d in
let idxs = mcreateL∞[1,2·d]{i,j ⇒

⟨j mod d,sign(j − d)⟩} in
ZCDP [δ ] { loop k on θ0 {t ,θ ⇒

let µ = 1.0/((real t) + 2.0) in
let д = L∇LR

L∞[θ ;X1,y] in
⟨i, s⟩ ← EPS DP {
exponential[ 1

rows X1

, ϵ] idxs {⟨i, s⟩ ⇒
s · д#[0, i]} ;}

let дp = (zeros d)#[0, i 7→ s · 100] in
return ((1.0 − µ) · θ) + (µ · дp) } }

We next consider a variation on gradient per-
turbation called the private Frank-Wolfe algo-
rithm [Talwar et al. 2015]. This algorithm has
dimension-independent utility, making it use-
ful for high-dimensional datasets. In each iter-
ation, the algorithm takes a step of fixed size
in a single dimension, using the exponential
mechanism to choose the best direction based
on the gradient. The sensitivity of each up-
date is therefore dependent on the L∞ norm
of each sample, rather than the L2 norm.
Our implementation uses the exponential

mechanism to select the direction in which
the gradient has its maximum value, then up-
dates θ in only the selected dimension. To get the right sensitivity, we compute the gradient with
L∇LRL∞, which requires an L∞ norm bound on its input and ensures bounded L∞ sensitivity.

We mix several variants of differential privacy in this implementation. Each use of the expo-
nential mechanism provides ϵ-differential privacy; each iteration of the loop satisfies 1

2ϵ
2-zCDP,

and the whole algorithm satisfies ( 12ϵ
2+2

√

1
2ϵ

2 log(1/δ),δ)-differential privacy. The use of zCDP
for composition is an improvement over the manual analysis of Talwar et al. [Talwar et al. 2015],
which used advanced composition.

5.4 Minibatching
An alternative form of minibatching to the one discussed in Section 5.2 is to randomly sample a
subset of of the data in each iteration. Bassily et al. [Bassily et al. 2014b] present an algorithm
for differentially private stochastic gradient descent based on this idea: their approach samples a
single random example from the training to compute the gradient in each iteration, and leverages
the idea of privacy amplification to improve privacy cost. The privacy amplification lemma states
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that if mechanismM(D) provides (ϵ,δ)-differential privacy for the datsetD of sizen, then running
M on uniformly randomγn entries ofD (forγ ≤ 1) provides (2γϵ,γδ)-differential privacy [Bassily
et al. 2014b; Wang et al. 2018] (this bound is loose, but used here for readability).

minibatch-gradient-descent X y k b η ϵ δ ≜

let X1 = clip-matrix X in
loop [δ ] k on zeros (cols X1) <X1,y> {t ,θ ⇒

sample b on X1,y {X ′1,y
′ ⇒

дp ← noisy-grad θ X ′1 y′ ϵ δ ; return θ − η · дp }}

We encode the privacy amplifica-
tion lemma in Duet using the sample
construct defined in Section 4. Similar
privacy amplification lemmas exist for
RDP [Wang et al. 2018] and tCDP [Bun
et al. 2018], but not for zCDP. We can
use sampling with privacy amplification
to implement minibatching SGD in Duet. Under (ϵ,δ)-differential privacy with privacy amplifi-
cation, Duet derives a total privacy cost of (4(b/m)ϵ

√

2k log(1/δ ′), (b/m)kδ + δ ′)-differential
privacy for this algorithm, which is equivalent to the manual proof of Bassily et al. [Bassily et al.
2014b].

5.5 Parallel-Composition Minibatching
As a final form of minibatching, we consider extending the parallel composition approach used by
Wu et al. [Wu et al. 2017] for sensitivity to parallel composition of privacy mechanisms for mini-
batching in the gradient perturbation approach from Section 5.1. Since the minibatches are disjoint
in this approach, we can leverage the parallel composition property for privacy mechanisms (Mc-
Sherry [McSherry 2009b], Theorem 4; Dwork & Lei [Dwork and Lei 2009], Corollary 20), which
states that running an (ϵ,δ)-differentially private mechanism k times on k disjoint subsets of a
database yields (ϵ,δ)-differential privacy. We encode this concept in Duet using the pfld-rows
construct defined in Section 4. The arguments to pfld-rows include the dataset and a function
representing an (ϵ,δ)-differentially private mechanism, and pfld-rows ensures (ϵ,δ)-differential
privacy for the dataset. This version considers minibatches of size 1, and is easily extended to con-
sider other sizes. We can use pfld-rows to implement epoch-based minibatching with gradient
perturbation, even for privacy variants like zCDP which do not admit sampling:

epoch b ρ η ≜

pλ xs ys θ ⇒
let s = R+[1.0]/real b in
д← mgauss[s, ρ] <xs,ys> {∇LR[θ ; xs,ys] } ;
return θ − η · д

epoch-minibatch-GD X y ρ η k b ≜

let m0 = zeros (cols xs) in
loop k on m0 <X ,y> {a,θ ⇒
pfld-rows(b,θ ,mclipL2 X ,y, epoch b ρ η)
}

This algorithm is similar in concept to the output perturbation approach of Wu et al. [Wu et al.
2017], but leverages parallel composition of privacy mechanisms for gradient perturbation instead,
and has not been previously published. The algorithm runs k epochs with a batch size of b, for a
total of kb iterations. Duet derives a privacy cost of kρ-zCDP for the algorithm.

5.6 Composing Privacy Variants to Build Complete Learning Systems
adaptiveClippingGradientDescent xs ys k ϵ δ ηs bs ≜

means ← colMeans(xs, ϵ,δ ,bs);
scales ← EPS_DP { colScaleParams(xs, ϵ,bs,means) };
let xsn = box (normalize xs means scales) in
η ← pick_η(unbox xsn ,ys,k, ϵ,δ ,ηs);
ZCDP[δ ]{noisyGradientDescentZCDP(b·(unbox xsn),ys,k,η, ϵ,δ)}

Putting together the pieces
we have described to build
real machine learning sys-
tems that preserve differen-
tial privacy often requires
mixing privacy variants in or-
der to obtain optimal results. We can use Duet’s ability to mix variants of differential privacy to
combine components in a way that optimizes the use of the privacy budget. We demonstrate this
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ability with an example that performs several data-dependent analyses as pre-processing steps
before training a model. Our example uses Duet’s ability to mix variants to compose z-score
normalization (using both pure ϵ and (ϵ,δ)-differential privacy), hyperparameter tuning (with
(ϵ,δ)-differential privacy), and gradient descent (with zCDP), returning a total (ϵ,δ) privacy cost.

6 IMPLEMENTATION & EVALUATION
This section describes our implementation of Duet, and our empirical evaluation of Duet’s ability
to produce accurate differentially private models. Our results demonstrate that the state-of-the-art
privacy bounds derivable by Duet can result in huge gains in accuracy for a given level of privacy.

6.1 Implementation & Typechecking Performance

Technique LOC Time (ms)
Noisy G.D. 23 0.51ms
G.D. + Output Pert. 25 0.39ms
Noisy Frank-Wolfe 31 0.59ms
Minibatching 26 0.51ms
Parallel minibatching 42 0.65ms
Gradient clipping 21 0.40ms
Hyperparameter tuning 125 3.87ms
Adaptive clipping 68 1.01ms
Z-Score normalization 104 1.51ms

Fig. 7. Summary of Typechecking Performance onCase
Study Programs

We have implemented a prototype of Duet
in Haskell that includes type inference of pri-
vacy bounds, and an interpreter that runs
on all examples described in this paper.
We do not implement Hindley-Milner-style
constraint-based type inference of quanti-
fied types; our type inference is syntax-
directed and limited to construction of pri-
vacy bounds as symbolic formulas over input
variables. Our implementation of type infer-
ence roughly follows the bottom-up approach
of DFuzz’s implementation [De Amorim et al.
2014]. Type checking requires solving con-
straints over symbolic expressions containing log and square root operations. Prior work (DFuzz
and HOARe2) uses an SMT solver during typechecking to check validity of these constraints, but
SMT solvers typically do not support operators like log and square root, and struggle in the pres-
ence of non-linear formulas. Because of these limitations, we implement a custom solver for in-
equalities over symbolic real expressions instead of relying on support from off-the-shelf solvers.
Our custom solver is based on a simple decidable (but incomplete) theory which supports log and
square root operations, and amore general subset of non-linear (polynomial) formulas than typical
SMT theories.
The Duet typechecker demonstrates very practical performance. Figure 7 summarizes the num-

ber of lines of code and typechecking time for each of our case study programs; even medium-size
programs with many functions typecheck in just a few milliseconds. Our implementation is open
source and freely available on GitHub at: https://github.com/uvm-plaid/duet.

6.2 Evaluation of Private Gradient Descent and Private Frank-Wolfe
We also study the accuracy of the models produced by the Duet implementations of private gra-
dient descent and private Frank-Wolfe in Section 5. We evaluate both algorithms on 4 datasets.
Details about the datasets can be found in Figure 8.
We ran both algorithms on each dataset with per-iteration ϵi ∈ {0.0001, 0.001, 0.01, 0.1} and

then used Duet to derive the corresponding total privacy cost. We fixed δ = 1
n2 , where n is the

size of the dataset. For private gradient descent, we set η = 1.0, and for private Frank-Wolfe we
set the size of each corner c = 100.
We randomly shuffled each dataset, then chose 80% of the dataset as training data and reserved

20% for testing. We ran each training algorithm 5 times on the training data, and take the average
testing error over all 5, to account for the randomness in the training process.
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Fig. 9. Accuracy Results for Noisy Gradient Descent (Top) and Noisy Frank-Wolfe (Bottom).

Dataset Samples Dim.
Synthetic 10,000 20

Adult 45,220 104
KDDCup99 70,000 114
Facebook 40,949 54

Fig. 8. Dataset Used in Accuracy Evalu-
ation

We present the results in Figure 9. Both algorithms are ca-
pable of generating accurate models at reasonable values of
ϵ . Note that all threemodels in the results provide exactly the
same privacy guarantee for a given value of ϵ , yet their accu-
racies vary significantly—demonstrating the advantages of
recently developed variants of differential privacy.

7 CONCLUSION
We have presented Duet, a language and type system for
expressing and statically verifying privacy-preserving programs. Unlike previous work, Duet is
agnostic to the underlying privacy definition, and requires only that it support sequential composi-
tion and post-processing. We have extended Duet to support several recent variants of differential
privacy, and our case studies demonstrate that Duet derives state-of-the-art privacy bounds for a
number of useful machine learning algorithms. We have implemented a prototype of Duet, and
our experimental results demonstrate the benefits of flexibility in privacy definition.
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