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Abstract
Widely-used pre�y printing libraries are built on assump-
tions from a previous age of computing that are no longer
universally true, such as monospace fonts and batch-mode
compilers. Furthermore, they are not extensible, which has
led to a plethora of similar libraries. We demonstrate an
approach to pre�y printing that is independently extensible
and supports proportional fonts and interactive interfaces.

1 Introduction
With the wealth of available compile-time information, stat-
ically typed functional languages should have the richest
interactive programming environments. However, our tools
are typically stuck in the world of monospaced text-based
terminals and ASCII identi�ers. While textual terminals are
still an importantmode of use that programming tools should
support, they should be the �oor rather than the ceiling for
our ambition. �e �rst step towards good programming tools
is good tool-making tools. We present one small part of the
solution: an extensible, �exible pre�y printing system.

A pre�y printer is the inverse of a parser. While a parser
converts human-wri�en text into a structured representa-
tion, a pre�y printer converts a structured representation of
data into human-readable text.

Ideally, pre�y printers should be speci�ed compositionally,
so that pre�y printers for di�erent productions in an AST
can be wri�en individually and then combined. Oppen [19]
described a composable imperative pre�y printing algorithm,
and classic papers by Hughes [15] and Wadler [25] provide a
description of pre�y printing in a lazy functional language.

Hughes and Wadler consider the pre�y printing problem
in the abstract, using these considerations to derive combi-
nator libraries for pre�y printing. Since these papers were
wri�en, however, it has become clear that some of their
simplifying assumptions have become limiting assumptions.
For example, libraries for pre�y printing tend to assume

that each character occupies a �xed width when rendered.
�is is not even true for English text when wri�en with a
proportionally spaced font, and the vast majority of fonts
are proportionally spaced. Features such as kerning, liga-
tures, and mixed le�-to-right and right-to-le� scripts, which
are now standard in most computing contexts, are likewise
ignored.
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Another limiting assumption of pre�y printing is that text
exists only for the understanding of humans, and that once
it is displayed, the computer can o�er no further assistance.
However, programming environments such as those for Lisp
and Smalltalk have supported a rich notion of text that is
supplemented with information about its meaning, enabling
tools and interaction strategies that are not possible for mere
text. �e interactive environment for Idris, a dependently
typed functional language, has been modeled on Lisp and
Smalltalk using a pre�y printer with a design like ours. Sec-
tion 2 describes some of the tools that this enables.

At the time of writing, there are 19 pre�y printing libraries
on Hackage. Seven of these were created by copying and
then modifying Daan Leijen’s implementation of Wadler’s
interface (wl-pprint), adding extensions such as support
for ANSI color codes (ansi-wl-pprint), semantic annota-
tions (annotated-wl-pprint), or embeddedmonadic e�ects
(wl-pprint-extras). While the ability to improve a pro-
gram and share these improvements is an advantage of free
so�ware, derived libraries do not bene�t from miscellaneous
improvements made to one another unless active e�ort is
made to port them. Additionally, these extensions cannot be
used together. Our pre�y printing library is extensible, and
each of these libraries could be implemented as an extension
on top of it. When possible, it is be�er to link than to fork.

Because documents are wri�en as programs, rather than
as a datatype, we call our library the Final Pre�y Printer. �is
name is aspirational as well as descriptive: our intention
is that that supporting extensibility, current user interface
technology, and a variety of scripts means that it is the last
pre�y printer that you’ll ever need.

Contributions
We make the following contributions to the state of func-
tional pre�y printing library design:
• We describe a pre�y printing library that supports
proportional fonts and non-Roman scripts.
• �e correctness of our algorithm is derived solely
from the laws governing standard functional pro-
gramming abstractions, and is stable under extension.
• �e library supports semantic annotations, making
its output more broadly useful.

2 Challenges and Opportunities
Past pre�y printing libraries have been built under a number
of assumptions, which are no longer universally true:
• Characters occupy a �xed width on the screen
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• �e rendering of a particular character, and thus its
width, is independent of the surrounding characters
• User interface devices are limited to the display and
input of text

Today, graphical displays are ubiquitous and computers are
used in many languages. �is presents challenges and op-
portunities.

2.1 Unicode
So�ware is used all over the world, by speakers of many
di�erent languages. �e syntax of most programming lan-
guages, however, is based primarily on characters from the
Latin alphabet. Choices about pre�y printing technology
that assume that all characters are the same width fail to
work in contexts where a variety of scripts are used in the
same project, such as a program in which some identi�er
names are technical terms in a variety of languages.

When represented in a �xed-width font, Latin characters
are signi�cantly narrower than they are tall. �is choice
does not work well for Chinese characters, however, which
are wider. Other scripts, like many of those from the Indian
subcontinent, realize a sequence of characters as a single
glyph, because vowels typically modify the preceding conso-
nant character rather than being drawn separately. In some
scripts, such as Sinhala, some combining vowels signi�cantly
increase the width of the resulting glyph.

Even if a programming language is only intended for use
with English-language identi�ers and syntax, it can be useful
to support Unicode operators, such as arrows and othermath-
ematical operators, that do not �t well within a �xed-width
format. Also, because many beautiful fonts are proportional,
a pre�y printer that can use them is strictly more useful than
one that cannot.

2.2 Interactive environments
�e computers on which programmers work today are al-
most universally equipped with a graphical display and a
mouse, touchpad, or touchscreen. While early graphical
programming environments such as Smalltalk [12], Lisp ma-
chines [18], Self [21, 23], and Nuprl [9] made the most of this,
allowing the interactive exploration of a live environment,
an image-based model is a challenging basis on which to
develop maintainable, reliable, redistributable so�ware. In
the retreat from graphical environments to batch processing
of plain text, however, something important has been lost.
A presentation [7, 18] is a link between an region of pro-

gram output and the underlying application object that it
represents. Presentations are perhaps best known from the
user interface toolkit of the thoroughly �le-oriented Sym-
bolics Lisp machines, though similar ideas were later imple-
mented by companies such as Lucid [11] as well as in other
Lisp environments [17, 20]. In an environment with presen-
tations, a REPL might print a result as usual, but a reference
to that result could be obtained for a new evaluation task by

data Bool = True
| False

(a) No padding

data Bool = True
| False

(b) Right padding

data Bool = True
| False

(c) Le� padding

data Bool = True
| False

(d) Centering

Figure 1. Aligning constructors and padding separators

clicking on it. Other commands could be performed on the
underlying object by interacting with its presentation.
Presentations are also useful in programming environ-

ments that do not separate object identity from object struc-
ture. For example, the interactive environment for Idris [3]
makes heavy use of presentations. All output from the com-
piler comes with semantic tags that provide the meaning of
each name that occurs in them, and all expressions that are
output by the compiler come with a reference to the under-
lying AST object. �is AST object can be used to interact
directly with the compiler, for example by normalizing an
expression in-place in an error message, by seeing the core
language representation of a term output in the REPL, or by
showing or hiding implicit arguments.
�e Final Pre�y Printer supports presentations through

a system of semantic annotations. When producing a doc-
ument from some datatype, it can be annotated with its
meaning. Later, meanings can be used both to a�ect the dis-
play of the output (e.g. by using di�erent fonts for top-level
de�nitions and locally-bound variables) and to associate the
output with commands relevant to its meaning.

2.3 Rendering to the Web
�e Haskell code in this paper is pre�y printed with the
Final Pre�y Printer. Rather than reimplementing the quite
complex operations needed to render multilingual text, this
pre�y printer piggybacks on themassive amount of work put
into the text rendering engines ofWeb browsers. Our Haskell
pre�y printer, built with the Haskell to Javascript compiler
ghcjs,1 runs entirely in a browser. �e pre�y printer’s out-
put was converted to PDF for display in this paper.
As can be seen in Figure 1a, the customary alignment of

the = character with the vertical bar separators in datatype
de�nitions becomes more subtle when proportional-width
fonts are used. A vertical bar is much narrower than =, which
leads to the constructors not starting the same distance from
the le� margin. To achieve an appealing layout, it is neces-
sary to horizontally pad the documents that represent the
vertical bars to the width of the = document, in essence mak-
ing them monospaced once more. Right and le� padding, in
Figures 1b and 1c, cause the constructors to be appropriately

1Available at the time of writing from h�ps://github.com/ghcjs/ghcjs.
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aligned, but we chose to center them with respect to one
another (Figure 1d). While text forma�ing is implemented
using CSS rules, spacing and alignment are implemented by
inserting HTML elements with explicit widths.

2.4 Interactive documents
A previous pre�y printer with semantic annotations was
used to write Idris’s pre�y printer, and work is underway to
port Idris to the Final Pre�y Printer. While Idris’s IDE pro-
tocol is editor-independent, the Emacs environment (called
simply idris-mode) currently makes best use of these fea-
tures.
In idris-mode, mousing over any identi�er provides a

tooltip that gives its fully-quali�ed name, its type, and a
summary of its documentation. Right-clicking the name
provides a menu that allows queries such as reading the
full documentation, ge�ing a list of all de�nitions that refer
to that name or all names that its de�nition refers to, or
browsing other de�nitions from the namespace in which it
is de�ned.

Additionally, right-clicking any region of compiler output
that represents an expression pops up a menu with com-
mands to show or hide implicit arguments, to normalize it,
and to show its meaning in Idris’s core language. �is is
especially useful in error messages. Users can interact with
the expressions that occur in e.g. uni�cation failures without
needing to change a se�ing and re-provoke the error.
How does all this work? All output from the Idris com-

piler to an editor has not only a string, but also a list of
o�set-length-metadata triples that are derived from the an-
notations. �e metadata is a serialization of Idris’s internal
semantic annotations. While pre�y printing, each docu-
ment representing a name is annotated with its actual name,
and each document representing an expression is annotated
with that very expression. In other words, these documents
present their associated objects.

Prior to transmission to the editor, name annotations are
enriched with metadata such as documentation and type
signatures, and expression annotations are serialized into
a form suitable for transmission over a text protocol. �en,
editors can use this serialized representation to request other
views of the expression, such as the core language or the
view in which implicit arguments have been made explicit.

Another advantage of presentations is that they can be
used to provide a reference to something for which there is
no valid syntax. For example, in systems that have a notion
of reference equality and destructive updates, presentations
can be used to destructively update a previous REPL value.
In systems like Idris, internal names used by the compiler
for automatically-generated helper functions do not always
have a syntax that the user can type. Inspecting these is
much easier when a presentation can be used to indicate
which is desired.

(a) Tooltips display metadata for presentations

(b) Contextual menus provide additional commands

(c) Presented terms can be normalized in-place

Figure 2. Interactive error messages in Idris

3 Core Library
A pre�y printer constructs a representation of a set of strings,
called a document, and then arranges for one string from
this set to be chosen according to some measure of quality.
�is set of strings is built from atomic strings, which will
always occur verbatim in the output, and conditional string
combinations that can be either be rendered in one line or
on multiple lines.
Like many APIs, a pre�y printing library can be seen as

a domain-speci�c embedded language [14]. Hughes’s and
Wadler’s pre�y printing libraries [15, 25] can be seen as deep
embeddings [2] of a pre�y printing language in Haskell.
On the other hand, our API can be seen as a shallow em-

bedding of a language similar to that described by Wadler.
�is approach has the typical advantage of shallow embed-
dings: the metalanguage can be directly used to extend the
embedded language. Traditionally, it is easier to obtain multi-
ple interpretations of deeply embedded languages; we follow
the Finally Tagless approach [4] in using type classes to
recover multiple interpretations.

3.1 Lines, Widths, and Formatting
In �xed-width contexts, a width is simply a character count.
Rendering horizontal space consists of inserting the correct
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data Chunk w = CText Text
| CSpace w

deriving (Eq, Ord)

data Atom w = AChunk (Chunk w)
| ANewline

deriving (Eq, Ord)

type Line w fmt = [(Chunk w, fmt)]

data Layout = Flat
| Break

deriving (Eq, Ord)

data Failure = CanFail
| CantFail

deriving (Eq, Ord)

Figure 3. Core datatypes

number of space characters. In order to support proportional-
width fonts properly, it is necessary to have a notion of width
that is not just a character count. In proportional-width
contexts, a width is typically a rational or �oating-point
number, and rendering horizontal space requires advancing
horizontally through some drawing context or constructing
an empty box of the appropriate size, because there is no
guarantee that the width of space characters evenly divides
every horizontal space.

�e core datatypes of the library are in Figure 3. Internally,
the contents of text lines are represented using the datatype
Chunk, which is parameterized over the widths used in the
current drawing context.

CText represents a string to be included, and CSpace rep-
resents an amount of horizontal space to be skipped. An
important invariant is that the text included in CText con-
tains no newlines, and that any space characters included
are part of a literal string to be produced that are not oppor-
tunities for line breaks.

Di�erent output contexts support di�erent notions of for-
ma�ed text. A terminal emulator might support some lim-
ited font options, such as boldface and colors, while Web
browsers and newer TEX implementations such as LuaTEX
and XeTEX support the full range of options found in modern
OpenType fonts, including customizable ligatures, language-
speci�c glyph variations that share Unicode code points,
stylistic sets, and many di�erent weights and sizes.

An individual Line of text is represented as a list of pairs
of chunks and forma�ing options. Lines are not the output
of the pre�y printer. Rather, they are an intermediate data
structure used to track a current line while deciding where
to break lines in the output.

�e classMeasurew fmt m in Figure 4 represents amethod
for determining the horizontal width of a line in some context
m, where chunks in the line can be forma�ed using fmt. �e
functional dependencies encode that each rendering context

class Measure w fmt m | m → w, m → fmt where
measure :: Line w fmt→ m w

Figure 4. �e Measure class

has a unique unit of horizontal measurement as well as a
unique collection of forma�ing options.

�ewidths found in Hughes’s andWadler’s pre�y printers
can be recovered by making forma�ing trivial, using Int for
widths, and measuring by counting characters (T.length �nds
the length of a Text).
instance Measure Int () Identity where

measure = pure ∘ sum ∘ fmap (chunkLength ∘ fst)
where
chunkLength (CText t) = T.length t
chunkLength (CSpace w) = w

For the Web backend that was used to render the code in
this paper, Measure is more subtle. When pre�y printing to
a Web page, the precise location of the text in the page’s AST
can change the text’s appearance. �us, the pre�y printer is
invoked on a particular target element into which the docu-
ment is to be displayed. Widths are Doubles that measure
the number of horizontal pixels taken up by a document,
and forma�ing consists of a list of strings that represent CSS
class names.

Instead of simulating a browser’s rendering, measurement
in the Web backend is empirical. Measurement consists of
adding the forma�ed text to the output target, and then
checking its width once the browser’s CSS styles have been
applied. A similar technique could be applied to other back-
ends, such as TEX or a drawing canvas.

Rendering that is accurate to fractional pixels motivates a
number of design considerations. First, the width of a space
is no longer just one unit. �e width of a space character
can change in di�erent contexts, as determined by the cur-
rent forma�ing. �us, the library provides primitives for
measuring the width of a string in the current context.

3.2 Pretty Printing
Rather than use a datatype to represent a document, we
instead represent the document directly as a monadic com-
putation that will select a concrete string when run. Not only
does this make the pre�y printing language extensible, it
also enables the re-use of existing Haskell control structures
for pre�y printing. �e type classMonadPre�y captures the
requirements for a monad to support pre�y printing. If there
is a MonadPre�y m instance, then we call m a pre�y monad.

Pre�y printing monads are parameterized over types rep-
resenting widths, semantic annotations, and forma�ing in-
structions. �ese are the parameters w, ann, and fmt, re-
spectively. If the type w is to be used for widths, then it
must be ordered, numeric, and able to be measured in the
pre�ymonad. Forma�ing instructions are necessary because
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class ( Ord w
, Num w
,Measure w fmt m
,Monoid fmt
,MonadReader (PEnv w ann fmt) m
,MonadWriter (POut w ann) m
,MonadState (PState w fmt) m
, Alternative m
) ⇒
MonadPrey w ann fmt m
| m → w, m → ann, m → fmt
where

Figure 5. Pre�y monads

choices of font might a�ect the width of a sub-document,
and fmt must be a monoid so that there is a neutral format-
ting instruction and so that forma�ing instructions can be
combined.
�e actual process of constructing the next line of a con-

crete string from a document involves backtracking from
lines that are too long. �us, a pre�y monad must also imple-
ment Alternative. (We discuss backtracking in more detail
in Section 3.5.) A�er each line is completed, it is emi�ed,
so pre�y monads must be aMonadWriters of outputs. �e
line under construction may be read for purposes of mea-
surement, or wri�en to when a new segment �ts, so pre�y
monads are alsoMonadStates. Finally, information such as
the current forma�ing, the current indentation level, and
whether the pre�y printer is currently running in �at mode
or in line breaking mode has dynamic extent, so pre�y mon-
ads satisfyMonadReader. �e environment also maintains
the maximum line width and the ribbon length, which is a
maximum width that excludes indentation. �e complete
de�nition of MonadPre�y is in Figure 5, Figure 6 lists some
of the operations that can be derived for any pre�y monad,
and Figure 7 de�nes auxiliary datatypes.

3.3 Grouping
Like Oppen’s, Hughes’s, and Wadler’s libraries, the Final
Pre�y Printer supports grouping subdocuments. During
rendering, the library should a�empt to keep groups on one
line, if possible, or place them on multiple lines if they do
not �t. When one group contains another, then the inner
groups should, if possible, be placed on individual lines even
if the entire group does not �t. �e Final Pre�y Printer uses
the Alternative class to implement this backtracking. �e
entire library maintains the invariant that pre�y printing
never ultimately fails; all failures are local, and recovered
from.

�e grouping operator uses the MonadReader operations
to communicate with its subdocuments. It �rst tries to pre�y
print the subdocument in a context which disables line breaks
and allows failure (i.e. calls to empty), and if this fails, then
tries pre�y printing in a context which enables line breaks

askFormat :: (MonadReader (PEnv w ann fmt) m
, Monoid fmt
)⇒
m fmt

modifyLine :: (MonadState (PState w fmt) m)⇒
(Line w fmt→ Line w fmt) → m ()

askFailure :: (MonadReader (PEnv w ann fmt) m)⇒
m Failure

askMaxWidth :: (MonadReader (PEnv w ann fmt) m)⇒
m w

askMaxRibbon :: (MonadReader (PEnv w ann fmt) m) ⇒
m w

measureCurLine :: (Measure w fmt m
, Monad m
, MonadState (PState w fmt) m
)⇒
m w

askNesting :: (MonadReader (PEnv w ann fmt) m)⇒
m w

Figure 6. MonadPre�y operations

data PEnv w ann fmt = PEnv { maxWidth :: w
, maxRibbon :: w
, nesting :: w
, layout :: Layout
, failure :: Failure
, formaing :: fmt
, formatAnn :: ann→ fmt
}

data POut w ann = PNull
| PAtom (Atom w)
| PAnn ann (POut w ann)
| PSeq (POut w ann) (POut w ann)

deriving (Eq, Ord, Functor)

data PState w fmt = PState { curLine :: Line w fmt }
deriving (Eq, Ord)

Figure 7. Auxiliary datatypes

and disallows failure. Because the second a�empt disallows
failure, it is guaranteed to succeed, maintaining the invariant
that pre�y printing always produces some answer.

Atomic Chunks are pre�y printed using chunk, in Figure 8.
�e �rst step is to add the chunk to the output, using tell,
and to append it and its forma�ing to the current line. Next,
chunk checks whether there is a failure handler in the dy-
namic extent of the current document using askFailure. If
there is, then the current rendering task is speculative, and
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chunk :: (MonadPrey w ann fmt m)⇒
Chunk w→ m ()

chunk c =
do tell $ PAtom $ AChunk c

format ← askFormat
modifyLine $ flip mappend [(c, format)]
f← askFailure
when (f == CanFail) $
do wmax← askMaxWidth

rmax ← askMaxRibbon
w← measureCurLine
n← askNesting
when (n + w > wmax) empty
when (w > rmax) empty

grouped :: (MonadPrey w ann fmt m)⇒
m a → m a

grouped aM =
ifFlat aM $ (makeFlat ∘ allowFail) aM <|> aM

ifFlat :: (MonadPrey w ann fmt m)⇒
m a → m a → m a

ifFlat flatAction breakAction =
do l← askLayout

case l of
Flat → flatAction
Break → breakAction

Figure 8. Determining line breaks

might be undone if it over�ows the current line. �us, the
current line is measured, and its width is used together with
the indentation level to determine whether adding the chunk
was successful.

Previous pre�y printing libraries provide a conditional
newline operator that may be replaced with a space when
inside a group. �e Final Pre�y Printer decomposes the con-
ditional newline into a more fundamental operation, ifFlat,
which conditionally selects one or another document de-
pending on whether the current context is �at. Wadler’s con-
ditional newline can be recovered as ifFlat (space i) newline,
where i is the width to use for the space. �is decomposition
allows newlines to be undone into no space at all. It also al-
lows the library to be used to correctly pre�y print languages
such as Haskell, where do-notation requires semicolons be-
tween statements that are on the same line, and Idris, where
case expressions should use braces and semicolons when on
one line, but the layout rule when breaking lines.

Note that a pre�y printer computation that always takes
the line-breaking branch for each ifFlat will never fail. �is is
because such computations do not contain any grouping, and
without grouping, there can be no backtracking. �e call to
ifFlat in grouped should be seen as ameans of communication
with other calls to grouped — see Section 7 for a proof that
grouped is idempotent.

Recovering Hughes-Style Printing Although our pre�y
printer resembles that of Wadler [25], the original Hughes
pre�y printing algorithm [15] can also be recovered in our
se�ing by changing the implementation of grouped. Hughes-
style pre�y printing allows inner groups to force line breaks
in the context of an outer group. For example, if we rede�ned
group to always a�empt both sides of the branch, regardless
of the inherited context:

grouped aM =
(makeFlat ∘ allowFail) aM <|>
(makeBroken ∘ disallowFail) aM

thenwewould get the following layout for a nested S-expression:
(abd ((a

b
c)
(a
b
c)))

instead of the current (Wadler-based) algorithm which pro-
duces:
(abd
((a b c)
(a b c)))

For more discussion on the di�erences betweenWadler-style
and Hughes-style pre�y printing, and for the origin of this
example, see Bernardy [1].

3.4 Indentation
Indentation in the Final Pre�y Printer is tracked as part of
the dynamic environment of pre�y monad computations.
�e current indentation level is used to determine whether
a line exceeds the ribbon width, and also to insert space at
the beginning of a new line. �e nest operator increments
this level in its dynamic extent, causing indentation levels to
follow the lexical structure of the programs being displayed.

Oppen’s, Hughes’s, and Wadler’s pre�y printing libraries
cause the elements of groups to have the same base indenta-
tion. In other words, when the newlines in a group cannot be
undone, then the group’s members are le�-aligned. �is is
good for expression-oriented programming languages, and
also for many block-structured languages. However, popular
styles in languages like Javascript and Haskell sometimes
call for subgroups to be indented a �xed amount, rather than
aligned with their �rst token. For example, in the following
snippet, the contents of the callback are not indented relative
to the function keyword.
window.setTimeout(function () {

console.log("Message");
}, 5000);

Likewise, some Haskell users prefer a “dangling do” style,
where do introduces a block rather than an expression. �e
do-expression is grouped, but when rendering on more than
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one line, those lines should be far to the le� of the beginning
of the expression.

measureText txt = do
format <- askFormat
measure [(CText txt, format)]

To make both expression-style and block-style printing
possible, the Final Pre�y Printer provides an align operator
that increases the nesting to the current column, and an
operator expr that composes alignment and grouping.

3.5 Instantiating the Interface
So far, we have only discussed the interface required to in-
stantiate our pre�y printer, embodied in the MonadPre�y
type class shown in Figure 5. To execute the pre�y printer,
one must construct a suitable monad which adheres to the
MonadPre�y interface. We construct this monad using mon-
ad transformers [16], for which there are two degrees of
freedom in constructing a suitable monad:

1. Choosing a monad to implement Alternative; and
2. Choosing the order of each monad transformer.

For (1) we choose to implement the Alternative interface
with Maybe, which has the e�ect of a�empting each branch
of pre�y printing logic until the �rst success, a�er which
later branches are not considered.

For (2) we choose the following order of transformers:
type DocM w ann fmt a =

RWST (PEnv w ann fmt)
(POut w ann)
(PState w fmt)
Maybe
a

which induces a datatype equivalent to:
type Doc w ann fmt =

PEnv w ann fmt→
PState w fmt→
Maybe (PState w fmt, POut w ann)

�is ordering ensures that when backtracking occurs, modi-
�cations to the state and output are discarded before a�empt-
ing the next branch of pre�y printing. An ordering of RWST
and MaybeT in the other direction would have an opposite,
undesirable e�ect.

An Alternative Alternative Another choice for (1) would
be to use the list monad ([]) instead of Maybe. �is choice
of monad stack allows for ranking multiple successful pre�y
printer renderings in terms of some metric of quality. Our
implementation which uses Maybe is ultimately greedy, and
always selects the �rst successful pre�y printing branch
without a�empting any others. �is has the defect of not
�nding “pre�ier” documents which result from successful
layouts which are not lexicographically �rst in the branching
logic of the algorithm. See Bernardy [1] for an e�ective

solution to this problem based on ranking layouts with a
quality metric.

4 Semantic Annotations
Semantic annotations cannot be added to a document a�er
it is rendered because, in many cases, the meaning of a doc-
ument should inform the way that it looks. For example,
rendering keywords in bold or variables that refer to types
in italic can change the width of that document, so the pre�y
printer must be able to make use of the relationship between
semantics and appearance when rendering. A function from
annotations to forma�ing is provided as part of the pre�y
printing environment, that is, the Reader portion of the state,
and is used to format the output as it is being printed.
Annotations are added using the annotate operator. Dur-

ing rendering, annotate adds the forma�ing associated with
the desired annotation. �e resulting linearized represen-
tation of the document contains annotations around some
of the substrings, and later output can use the annotations
to construct an interface above and beyond the forma�ing
instructions.
�ere is a caveat: if the forma�ing applied to annotated

documents during rendering does not accurately capture the
forma�ing used when drawing the output, then decisions
made on the basis of the widths of subdocuments will not
be accurate. We leave the maintenance of this invariant to
users.

Running a pre�y printing computation results in a POut,
which is de�ned in Figure 7. �e PAnn constructor associates
meanings with sub-regions of the output, and di�erent inter-
faces are free to use that information. For instance, it can be
used to select ANSI color codes for rendering to a console, or
to associate regions in a GUI with their meanings. Because
POut w is a functor, it is also possible to post-process pre�y-
printer output to enrich the annotations with information
that was not available at pre�y-printing time.

5 Extensions
A pre�y printing library will not be all things to all people.
To support additional features, the Final Pre�y Printer can be
enriched with additional e�ects using monad transformers.
�ese extensions can only be used together, however, if they
do not change each others’ semantics, and the e�ects are
independent. Fortunately, this is the case.

De�nition 5.1. A transformer of pre�y monads is a monad
transformer [16] that preserves the speci�cation of the pre�y
printing operations.

�eorem 5.2. Every monad transformer is a transformer of
pre�y monads.

Proof. If T is a monad transformer, then li� commutes with
>>=, which implies that the structure of the transformed
monads is preserved. �e proofs (in Section 7) that our

7
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algorithm satis�es its speci�cation make use only of the
abstract laws of their implementation monad, so they also
hold for T m. �

Two convenient extensions that are widely useful are vari-
able environments and precedence and associativity.

5.1 Variable Environments
An almost universal feature of programming languages is
binding structure, and the scoping rules of a language are
not always easy to discover from its surface syntax. Pre�y
printers with semantic annotations can use the language
implementation’s facilities for resolving variable scopes to
provide an implementation that connects binding sites with
use sites. Additionally, bound variables can be annotated
with type information, documentation, and other metadata
that may not be immediately apparent to readers, and the
context in which the document is displayed can then use this
information to increase the understandability of the output.

Because the structure of a lexical environment corresponds
closely to the structure of an AST, a pre�y printer that
traverses this structure to produce a document can faith-
fully represent the lexical environment using an additional
MonadReader e�ect.
To avoid con�icts with the built-in MonadReader con-

straint on MonadPre�y, a wrapper is needed. We begin
by de�ningMonadReaderEnv, which represents readers of
some environment env.

class MonadReaderEnv env m | m → env where
askEnv :: m env
localEnv :: (env→ env) → m a → m a

A monad that is both pre�y and a reader of environments is
a MonadPre�yEnv.

class (MonadPrey w ann fmt m
,MonadReaderEnv env m
) ⇒
MonadPreyEnv env w ann fmt m
| m → w, m → ann, m → fmt, m → env
where

A newtype wrapper around ReaderT is su�cient to de�ne
EnvT as a transformer of pre�y monads.

5.2 Operator Precedence and Associativity
A reader e�ect for an environment consisting of operator
precedence and associativity information as well as the sur-
rounding context’s precedence and associativity can be de-
�ned using a construction similar to EnvT. �is additional
structure can be used to enrich the pre�y printing language
with operations for inserting parentheses as necessary.

�e precedence environment consists of a current level,
whether or not it is bumped, and le� and right parentheses
with optional annotations. “Bumping” a precedence level is
used as a tiebreaker to implement associativity for nested
applications of operators with the same precedence. �e

data PrecEnv ann = PrecEnv { level :: Int
, bumped :: Bool
, lparen :: (Text, Maybe ann)
, rparen :: (Text, Maybe ann)
}

Figure 9. �e precedence environment

extension provides an operator atLevel that conditionally
inserts parentheses depending on the environment’s level
and a provided level.

6 Performance
�e performance of our pre�y printing algorithm is com-
parable to Wadler’s. In the best case, the time complexity
for pre�y printing is O(n) for n atoms in document being
printed. A pathological worst case for our algorithm occurs
when every atom in the document appears nested inside a
group expression. In this worst case, the time complexity for
pre�y printing is O(nw) for n atoms in the document being
printed and w as the maximum layout width. Informally
this worst case scenario plays out as follows: at each atom,
an a�empt is made to format the document on a single line
(O(w) work); at this point the current layout branch fails
and the algorithm backtracks to introduce a newline a�er
the �rst atom; and this is repeated for every atom in the
document, hence O(nw) work.

Notably, our implementation is not sensitive to the strict-
ness of the implementation language, as is the case for both
Hughes and Wadler.

7 Correctness
While it is important that so�ware in general be correct,
the nature of the correctness argument for the Final Pre�y
Printer is of special importance. We show that the correct-
ness of the core of the implementation is derived entirely
from the laws governing the control structures that are em-
ployed, rather than just a speci�c instantiation of these struc-
tures. �is allows arbitrary monad transformers to be used
to extend the library, hopefully pu�ing an end to the forking
of pre�y printing libraries.

7.1 Prior Work
�e original pre�y printing paper by Hughes [15] considered
the laws that a minimal pre�y printing api should satisfy,
and derived an algorithm which satis�ed those laws. �e
interface consisted of document construction operators:
(⋄) :: Doc → Doc → Doc Horizontal concatenation
($$) :: Doc → Doc → Doc Vertical concatenation
text :: String → Doc Literal text
nest :: Int → Doc → Doc Document nesting

and laws which they should satisfy (only some of which we
display here):

8
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x ⋄ text "" = x
(x ⋄ y) ⋄ z = x ⋄ (y ⋄ z)

text s ⋄ text s′ = text (s⧺ s′)
(x $$ y) $$ z = x $$ (y $$ z)
(x $$ y) ⋄ z = x $$ (y ⋄ z)

nest 0 x = x
nest k (nest k′ x) = nest (k + k′) x

nest k (x ⋄ y) = nest k x ⋄ nest k y
nest k (x $$ y) = nest k x $$ nest k y

Later work by Wadler [25] modi�ed the combinator inter-
face:

nil :: Doc �e empty document
(⋄) :: Doc → Doc → Doc Horizontal concatenation
text :: String → Doc Literal text
line :: Doc Newline
nest :: Int → Doc → Doc Document nesting
group :: Doc → Doc Grouping
(<|>) :: Doc → Doc → Doc Nondeterminism
flaen :: Doc → Doc Undo line breaks

and presented alternative laws (only some of which we dis-
play here):

x ⋄ nil = x
nil ⋄ x = x

(x ⋄ y) ⋄ z = x ⋄ (y ⋄ z)
(x <|> y) <|> z = x <|> (y <|> z)
(x <|> y) ⋄ z = (x ⋄ z) <|> (y ⋄ z)
x ⋄ (y <|> z) = (x ⋄ y) <|> (x ⋄ z)

nest 0 x = x
nest i (nest i′ x) = nest (i + i′) x
nest i (x <|> y) = nest i x <|> nest i y

To construct a veri�ed pre�y printer, Danielsson [10] for-
malized a variant of Wadler’s algorithm in Agda and was
successful in proving many of these laws. In the process,
it was discovered that the following law from Wadler [25]
actually doesn’t (and shouldn’t) hold:

(x <|> y) ⋄ z = (x ⋄ z) <|> (y ⋄ z)

7.2 Our Work
�e core layout algorithm of our pre�y printer is chunk, in
Figure 8. We use chunk to implement higher-level operators
for creating and combining documents, a subset of which
coincide with Wadler’s interface. Our implementation of
Wadler’s combinators also obeys Wadler’s pre�y printing
laws. �e challenge in our se�ing is how to prove that they
hold for any pre�y monad.

Our pre�y printer is parameterized by a monad m which
implements various monadic reader, writer, state, and non-
determinism operations. A pre�y printer document is then
a monadic action m () in this arbitrary monad, and we would
like to prove that pre�y printing laws hold for any m that
chunk is executed in, up to possibly some restriction on m.
�e result we describe in this section is that, not only is it
possible to that our algorithm satis�es the pre�y printing

laws with respect to an uninstantiated law-abiding monad,
but also that the proofs proceed directly from the monad
laws.

7.3 Monad Laws
�e monad laws which we assume are standard [24]:

return x ≫= k = k x
c ≫= return = c

(c ≫= f) ≫= k = c ≫= λx→f x ≫= k
We additionally assume laws for nondeterminism:

empty ≫= k = empty
c ≫= λ_→empty = empty
(c1 <|> c2) <|> c3 = c1 <|> (c2 <|> c3)
(c1 <|> c2) ≫= k = (c1 ≫= k) <|> (c2 ≫= k)

c <|> c = c
and the standard laws for reader e�ects:

local f ask = ask ≫=
λx→return (f x)

local id c = c
local f (local g c) = local (f ∘ g) c
local f (c1 <|> c2) = local f c1 <|>

local f c2
local f (c1 ≫= k) = local f c1 ≫=

λx→local f (k x)
and writer e�ects:

tell mempty = nil
tell o1 ≫ tell o2 = tell (o1⧺ o2)

and state e�ects:
put s ≫ put s′ = put s′
put s ≫ get = put s ≫ return s
get ≫= put = return ()

get ≫= λs→get ≫= k s = get ≫= λs→k s s
We also require that writer and state e�ects commute with
failure. When constructing monad transformers to imple-
ment our e�ect interface, this �xes the order of StateT and
WriterT in relationship to MaybeT, namely that they appear
higher in the stack.

7.4 Pretty Printing Laws from Monad Laws
Let’s start small, from our implementation of ⋄ and nil:

(⋄) :: (MonadPrey w ann fmt m) ⇒
m () → m () → m ()

c1 ⋄ c2 = c1 ≫ c2

nil :: (MonadPrey w ann fmt m)⇒
m ()

nil = return ()

Lemma 7.1. m (), ⋄ and nil form a monoid, that is:

nil ⋄ x = x
x ⋄ nil = x

(x ⋄ y) ⋄ z = x ⋄ (y ⋄ z)
9
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chunk (CText s) =
do tellString s

addLine s
checkBreak

where
tellString s =

tell $
PAtom $
AChunk (CText s)

addLine s =
do format← askFormat

modifyLine $
flip mappend
[(CText s, format)]

checkBreak =
do f← askFailure

when (f == CanFail) $
do wmax← askMaxWidth

rmax← askMaxRibbon
w← measureCurLine
n← askNesting
when (n + w > wmax) empty
when (w > rmax) empty

Figure 10. chunk, specialized to CText, with named subparts

Proof. Directly from monad le� unit, right unit, and associa-
tivity laws. �

�e implementation of text uses chunk to insert a text chunk.
text :: (MonadPrey w ann fmt m)⇒ Text → m ()
text t = chunk (CText t)

�e proofs about text rely on various sub-parts of chunk.
Figure 10 names some of the intermediate computations
within chunk specialized to CText s.

Lemma 7.2. text is a monoid homomorphism, that is:
text (s1⧺ s2) = text s1 ⋄ text s2

Our proof relies on the fact that failure discards changes
in both the state and output, and therefore commutes with
state and writer e�ects.

Proof. First, we unfold the de�nition of chunk in text:
text (s1⧺ s2)

= {{ unfolding text }}
chunk (CText (s1⧺ s2))

= {{ unfolding chunk }}
do tellString (s1⧺ s2)

addLine (s1⧺ s2)
checkBreak

= {{ output and line monoid homomorphism }}
do tellString s1

tellString s2
addLine s1
addLine s2
checkBreak

= {{ commuting tell and modify e�ects }}

do tellString s1
addLine s1
tellString s2
addLine s2
checkBreak

= {{ idempotent failure e�ects }}
do tellString s1

addLine s1
checkBreak
tellString s2
addLine s2
checkBreak

= {{ refolding }}
text s1 ⋄ text s2

�

Next, our implementation of nest:
nest :: (MonadPrey w ann fmt m)⇒ w→ m () → m ()
nest i c = localNesting (λi′→i + i′) c

Lemma 7.3. If the Num instance for w has 0 as a unit for +,
then nest has unit 0 and is distributive through +, ⋄ and <|>,
that is:

nest 0 x = x
nest i (nest i′ c) = nest (i + i′) c
nest i (x ⋄ y) = nest i x ⋄ nest i y

nest i (x <|> y) = nest i x <|> nest i y

Proof. Directly from reader monad unit and distributivity
laws. �

Our implementation ofWadler’s group is a rephrased version
of grouped from Figure 8.

group :: (MonadPrey w ann fmt m)⇒ m a → m a
group c = ifFlat c $ flaen c <|> c
where
flaen = makeFlat ∘ allowFail

Lemma 7.4. group is idempotent and distributes through <|>,
that is:

group (group x) = group x
group (x <|> y) = group x <|> group y

Proof. For idempotency:
group (group x)

= {{ unfolding group }}
ifFlat (group x) $
flaen (group x) <|>
group x

= {{ unfolding ifFlat }}
do f← askFlat

if f
then group x
else flaen

(group x) <|>
group x

= {{ group under askFlat = True }}
10
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do f← askFlat
if f
then x
else flaen x <|>

group x
= {{ group under askFlat = False }}

do f← askFlat
if f
then x
else flaen x <|>

flaen x <|>
x

= {{ <|> idempotent }}
do f← askFlat

if f
then x
else flaen x <|> x

= {{ refolding group }}
group x

and for distribution:
group (x <|> y)

= {{ unfolding group }}
do f← askFlat

if f
then x <|> y
else flaen

(x <|> y) <|>
x <|>
y

= {{ distributivity of �a�en }}
do f← askFlat

if f
then x <|> y
else flaen x <|>

flaen y <|>
x <|>
y

= {{ nondeterminism distribution }}
(do f← askFlat

if f
then x
else flaen x <|> x) <|>

(do f← askFlat
if f
then y
else flaen y <|> y)

= {{ refolding }}
group x <|> group y

�

8 Related Work
Pre�y printing libraries can be evaluated according to a
number of parameters, including the variety of layouts that
the document language can describe, the space and time

complexity of the string selection algorithm, and the quality
of the string selection with respect to e�cient use of screen
space.
Goldstein [13] provided an algorithm for pre�y printing

Lisp code that was extensible with custom forma�ing in-
structions for built-in operators. �is pre�y printing system
was interactively extensible by users of MacLisp, rather than
being a library for expressing a single pre�y printer for a
�xed language. Goldstein’s algorithm performed a great deal
of lookahead, and was therefore not suitable for printing
large documents.
Oppen [19] described the �rst e�cient general-purpose

pre�y printing algorithm, in the form of a li�le language
for expressing grouping and literal strings. Presented in an
imperative style, Oppen’s algorithm requires time linear in
the length of the string to be produced and space linear in
the width to be used.

A paper by Hughes [15] may be responsible for beginning
the Haskell community’s love for pre�y printing. Hughes
provides pre�y printing as an exercise in deriving functional
programs from their algebraic speci�cation. A variation on
his library is used in the Glasgow Haskell Compiler today.

Wadler [25] describes a design for a pre�y printing library
that is simpler and faster that Hughes’s, though there are
some layouts that it cannot describe. �e Final Pre�y Printer
implements essentially the same algorithm as Wadler, al-
though noticing this fact requires rewriting it to take less
explicit advantage of lazy evaluation. Indeed, a�er imple-
menting the Final Pre�y Printer, the authors noticed that the
interplay of chunk and ifFlat bear a striking resemblance to
Ken Friis Larsen’s port of Wadler’s library to Standard ML.2
While Hughes’s and Wadler’s designs are both elegant

and fast enough for many real applications, they do not
enjoy the same asymptotic complexity as Oppen’s algorithm.
Chitil [5, 6] demonstrated that Oppen’s algorithm can be
implemented in a functional style using lazy dequeues or
delimited continuations. Swierstra and Chitil [22] later made
this implementation even more clear.
Bernardy [1] managed to provide an implementation of

all of Hughes’s layouts while providing the very strong guar-
antee that only the shortest realization of the document as
a string will be provided. His implementation takes time
linear in the length of the output, using a quality-ranking
method to rule out exploration of non-optimal documents.

�e expressiveness and performance characteristics of the
Final Pre�y Printer are roughly similar to Wadler’s. In other
words, it has worse complexity that Chitil’s, and be�er com-
plexity that Hughes’s. In future work, it would be interesting
to explore an adaptation of Bernardy’s algorithm to a �nal
pre�y printer.

2Available at the time of writing from h�ps://github.com/kfl/wpp
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9 Conclusion
We described the Final Pre�y Printer, a pre�y printing library
that is both highly expressive and extensible. It derives its
extensibility from the fact that it is correct in any monad, so
monad transformers can be used to give it new capabilities,
and we demonstrated two widely-applicable extensions. We
have implemented a new pre�y printer for cubicaltt, an
implementation of Cubical Type �eory [8], showing that it
is practical for real systems, and work is underway to port
Idris’s interactive environment.
Semantic annotations enable the pre�y printer to pro-

duce presentations that link displayed strings to the meaning
that they represent. Presentations have been used in the
interactive environment for Idris, enabling interactive error
messages, pervasive metadata and documentation, and text
decorations that are based on semantics rather than syntax.

By decoupling the measurement of widths from character
counts, the Final Pre�y Printer enables language developers
to properly support almost every natural language in the
world, as well as proportional fonts and modern text layout
technology. We have demonstrated that it works in both
terminal emulators and in Web browsers, two very di�erent
environments.
�ere is no longer any reason to keep our programming

environments stuck in the 1970s. �e Final Pre�y Printer
supports today’s hardware and today’s text rendering tech-
nology. And with its built-in extensibility, it also supports
tomorrow’s.
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