
Galois Transformers and Modular Abstract Interpreters
Reusable Metatheory for Program Analysis

David Darais
University of Maryland, USA

darais@cs.umd.edu

Matthew Might
University of Utah, USA

might@cs.utah.edu

David Van Horn
University of Maryland, USA

dvanhorn@cs.umd.edu

Abstract
The design and implementation of static analyzers has be-
come increasingly systematic. Yet for a given language or
analysis feature, it often requires tedious and error prone
work to implement an analyzer and prove it sound. In short,
static analysis features and their proofs of soundness do not
compose well, causing a dearth of reuse in both implemen-
tation and metatheory.

We solve the problem of systematically constructing
static analyzers by introducing Galois transformers: monad
transformers that transport Galois connection properties.
In concert with a monadic interpreter, we define a library
of monad transformers that implement building blocks for
classic analysis parameters like context, path, and heap
(in)sensitivity. Moreover, these can be composed together
independent of the language being analyzed.

Significantly, a Galois transformer can be proved sound
once and for all, making it a reusable analysis component.
As new analysis features and abstractions are developed
and mixed in, soundness proofs need not be reconstructed,
as the composition of a monad transformer stack is sound
by virtue of its constituents. Galois transformers provide a
viable foundation for reusable and composable metatheory
for program analysis.

Finally, these Galois transformers shift the level of ab-
straction in analysis design and implementation to a level
where non-specialists have the ability to synthesize sound
analyzers over a number of parameters.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program analysis

Keywords abstract interpretation, monads, Galois connec-
tions, program analysis
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’15, October 25–30, 2015, Pittsburgh, PA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3689-5/15/10. . . $15.00.
http://dx.doi.org/10.1145/2814270.2814308

1. Introduction
Traditional practice in program analysis via abstract inter-
pretation is to fix a language (as a concrete semantics) and
an abstraction (as an abstraction map, concretization map or
Galois connection) before constructing a static analyzer that
is sound with respect to both the abstraction and the concrete
semantics. Thus, each pairing of abstraction and semantics
requires a one-off manual derivation of the static analyzer
and construction of its proof of soundness.

Work has focused on endowing abstractions with knobs,
levers, and dials to tune precision and compute efficiently.
These parameters come with overloaded meanings such as
object, context, path and heap sensitivities, or some combi-
nation thereof. These efforts develop families of analyses for
a specific language and prove the framework sound.

But this framework approach suffers from many of
the same drawbacks as the one-off analyzers. They are
language-specific, preventing reuse of concepts across lan-
guages, and require similar re-implementations and sound-
ness proofs. This process is still manual, tedious, diffi-
cult and error-prone. And, changes to the structure of the
parameter-space require a completely new proof of sound-
ness. And, it prevents fruitful insights and results developed
in one paradigm from being applied to others, e.g., func-
tional to object-oriented and vice versa.

We propose an automated alternative to structuring and
implementing program analysis. Inspired by Liang, Hudak,
and Jones’s Monad Transformers and Modular Interpreters
[12], we propose to start with concrete interpreters written in
a specific monadic style. Changing the monad will transform
the concrete interpreter into an abstract interpreter. As we
show, classical program abstractions can be embodied as
language-independent monads. Moreover, these abstractions
can be written as monad transformers, thereby allowing
their composition to achieve new forms of analysis. We
show that these monad transformers obey the properties of
Galois connections [5] and introduce the concept of a Galois
transformer, a monad transformer which transports Galois
connection properties.

Most significantly, Galois transformers are proven sound
once and for all. Abstract interpreters, which take the form

1 2015/10/5

of monad transformer stacks coupled with a monadic inter-
preter, inherit the soundness properties of each element in
the stack. This approach enables reuse of abstractions across
languages and lays the foundation for a modular metatheory
of program analysis.

Setup We describe a simple programming language and a
garbage-collecting allocating semantics as the starting point
of analysis design (Section 2). We then briefly discuss three
types of path and flow sensitivity and their corresponding
variations in analysis precision (Section 3).

Monadic Abstract Interpreters We develop an abstract
interpreter for our example language as a monadic func-
tion with parameters (Sections 4 and 5), one of which is
a monadic effect interface combining state and nondeter-
minism effects (Section 4.1). These monadic effects—state
and nondeterminism—encode arbitrary relational small-step
state-machine semantics and correspond to state-machine
components and relational nondeterminism, respectively.

Interpreters written in this style are reasoned about using
various laws, including monadic effect laws, and are veri-
fied correct independent of any particular choice of parame-
ters. Likewise, choices for these parameters are proven cor-
rect in isolation from their instantiation. When instantiated,
our generic interpreter recovers the concrete semantics and a
family of abstract interpreters with variations in abstract do-
main, abstract garbage collection, call-site sensitivity, object
sensitivity, and path and flow sensitivity (Section 6). Fur-
thermore, each derived abstract interpreter is proven correct
by construction through a reusable, semantics independent
proof framework (Section 8).

Isolating Path and Flow Sensitivity We give specific mon-
ads for instantiating the interpreter from Section 5 to path-
sensitive, flow-sensitive and flow-insensitive analyses (Sec-
tion 7). This leads to an isolated understanding of path and
flow sensitivity as mere variations in the monad used for ex-
ecution. Furthermore, these monads are language indepen-
dent, allowing one to reuse the same path and flow sensi-
tivity machinery for any language of interest, and compose
seamlessly with other analysis parameters.

Galois Transformers To ease the construction of monads
for building abstract interpreters and their proofs of correct-
ness, we develop a framework of Galois transformers (Sec-
tion 8). Galois transformers are an extension of monad trans-
formers which transport Galois connection properties (Sec-
tion 8.4). The Galois transformer framework allows us to
both execute and justify the correctness of an abstract inter-
preter piecewise for each transformer. Galois transformers
are language independent and they are proven correct once
and for all in isolation from a particular semantics.

Implementation We implement our technique as a Haskell
library and example client analysis (Section 9). Developers
are able to reuse our language-independent framework for

i ∈Z x ∈ Var

a ∈Atom ::= i | x | λ(x).e

⊕ ∈ IOp ::= + | −

⊙ ∈Op ::= ⊕ | @

e ∈Exp ::= a | e⊙ e | if0(e){e}{e}

τ ∈Time := Z

l ∈Addr := Var ×Time

ρ ∈Env := Var ⇀ Addr

σ ∈Store := Addr ⇀ Val

c ∈Clo ::= ⟨λ(x).e, ρ⟩

v ∈Val ::= i | c

κl ∈KAddr := Time

κσ ∈KStore := KAddr ⇀ Frame ×KAddr

fr ∈Frame ::= ⟨!⊙ e, ρ⟩ | ⟨v ⊙ !⟩ | ⟨if0(!){e}{e}, ρ⟩

ς ∈Σ ::= ⟨e, ρ,σ,κl,κσ, τ⟩

Figure 1. λIF Syntax and Concrete State Space

prototyping the design space of analysis features for their
language of choice. Our implementation is publicly available
on Hackage1, Haskell’s package manager.

Contributions We make the following contributions:

• A methodology for constructing monadic abstract inter-
preters based on monadic effects.

• A compositional, language-independent framework for
constructing monads with varying analysis properties
based on monad transformers.

• A compositional, language-independent proof frame-
work for constructing Galois connections and end-to-end
correctness proofs based on Galois transformers, an ex-
tension of monad transformers which transports Galois
connection properties.

• Two new general purpose monad transformers for non-
determinism which are not present in any previous work
on monad transformers (even outside static analysis liter-
ature). Although applicable to settings other than static
analysis, these two transformers give rise naturally to
variations in path and flow sensitivity when applied to
abstract interpreters.

• An isolated understanding of path and flow sensitivity in
analysis as properties of the interpreter monad, which we
develop independently of other analysis features.

Collectively, these contributions make progress toward a
reusable metatheory for program analysis.

1 http://hackage.haskell.org/package/maam

2 2015/10/5

A! " : Atom → (Env ×Store ⇀ Val)

A!i"(ρ,σ) := i

A!x"(ρ,σ) := σ(ρ(x))

A!λ(x).e"(ρ,σ) := ⟨λ(x).e, ρ⟩

δ! " : IOp → (Z× Z→ Z)

δ!+"(i1, i2) := i1 + i2

δ!−"(i1, i2) := i1 − i2

" : P(Σ× Σ)

⟨e1 ⊙ e2, ρ,σ,κl,κσ, τ⟩" ⟨e1, ρ,σ, τ,κσ′, τ + 1⟩ where

κσ′ := κσ[τ)→ ⟨⟨!⊙ e2, ρ⟩,κl⟩]

⟨if0(e1){e2}{e3}, ρ,σ,κl,κσ, τ⟩" ⟨e1, ρ,σ, τ,κσ′, τ + 1⟩ where

κσ′ := κσ[τ)→ ⟨⟨if0(!){e2}{e3}, ρ⟩,κl⟩]

⟨a, ρ,σ,κl,κσ, τ⟩" ⟨e, ρ′,σ, τ,κσ′, τ + 1⟩ where

⟨⟨!⊙ e, ρ′⟩,κl′⟩ := κσ(κl)

κσ′ := κσ[τ)→ ⟨⟨A!a"(ρ,σ)⊙ !⟩,κl′⟩]

⟨a, ρ,σ,κl,κσ, τ⟩" ⟨e, ρ′′,σ′,κl′,κσ, τ + 1⟩ where

⟨⟨⟨λ(x).e, ρ′⟩@ !⟩,κl′⟩ := κσ(κl)

ρ′′ := ρ′[x)→ ⟨x, τ⟩]

σ′ := σ[⟨x, τ⟩)→ A!a"(ρ,σ)]

⟨i2, ρ,σ,κl,κσ, τ⟩" ⟨i, ρ,σ,κl′,κσ, τ + 1⟩ where

⟨⟨i1 ⊕ !⟩,κl′⟩ := κσ(κl)

i := δ!⊕"(i1, i2)

⟨i, ρ,σ,κl,κσ, τ⟩" ⟨e, ρ′,σ,κl′,κσ, τ + 1⟩ where

⟨⟨if0(!){e1}{e2}, ρ′⟩,κl′⟩ := κσ(κl)

e := e1 when i = 0 ; e2 when i ̸= 0

Figure 2. Concrete Semantics

2. Semantics
To demonstrate our framework we design an abstract inter-
preter for λIF, a simple applied lambda calculus shown in
Figure 1. λIF extends traditional lambda calculus with inte-
gers, addition, subtraction and conditionals. We write @ as
explicit abstract syntax for function application. The state-
space Σ for λIF makes allocation explicit using two separate
stores for values (Store) and for the stack (KStore).

Guided by the syntax and semantics of λIF we develop
interpretation parameters in Section 4, a monadic interpreter
in Section 5, and both concrete and abstract instantiations
for the interpretation parameters in Section 6. The variations
in path and flow sensitivity developed in sections 7 and 8 are
independent of this (or any other) semantics.

"gc : P(Σ× Σ)

ς "gc ς′ where ς " ς′

⟨e, ρ,σ,κl,κσ, τ⟩"gc ⟨e, ρ,σ′,κl,κσ′, τ⟩ where

κσ′ := {κl)→ κσ(κl) | κl ∈ KR(κl,κσ)}

σ′ := {l)→ σ(l) | l ∈ R(e, ρ,σ,κl,κσ)}

KR : KAddr ×KStore → P(KAddr)

KR(κl,κσ) := µ(X).

X ∪ {κl} ∪ {π2(κσ(κl)) | κl ∈ X}

R : Exp×Env ×Store ×KAddr ×KStore → P(Addr)

R(e, ρ,σ,κl,κσ) := µ(X).

X ∪ {ρ(x) | x ∈ FV (e)}

∪ {l | l ∈ R-Frm(π1(κσ(κl))) ; κl ∈ KR(κl,κσ)}

∪ {l′ | l′ ∈ R-Val(σ(l)) ; l ∈ X}

R-Frm : Frame → P(Addr)

R-Frm(⟨!⊙ e, ρ⟩) := {ρ(x) | x ∈ FV (e)}

R-Frm(⟨v ⊙ !⟩) := R-Val(v)

R-Frm(⟨if0(!){e2}{e3}, ρ⟩) := {ρ(x) | x ∈ FV (e1) ∪ FV (e2)}

R-Val ∈ Val → P(Addr)

R-Val(i) := {}

R-Val(⟨λ(x).e, ρ⟩) := {ρ(y) | y ∈ FV (λ(x).e)}

collect : P(Σ)

collect := µ(X).X ∪ {ς0} ∪ {ς′ | ς "gc ς′ ; ς ∈ X} where

ς0 := ⟨e0,⊥,⊥, 0,⊥, 1⟩

Figure 3. Garbage Collected Collecting Semantics

We define semantics for atomic expressions and primi-
tive operators denotationally with A! " and δ! ", and to com-
pound expressions relationally with " , shown in Figure 2.

Our abstract interpreter supports abstract garbage collec-
tion [14], the concrete analogue of which is just standard
garbage collection. We include abstract garbage collection
for two reasons. First, it is one of the few techniques that
results in both performance and precision improvements for
abstract interpreters. Second, we will systematically recover
concrete and abstract garbage collectors with varying path
and flow sensitivities through a single monadic garbage col-
lector, an axis of generality novel in this work.

We show the garbage collected semantics in Figure 3,
as well as a final collecting semantics collect, which will
serve as the starting point for abstraction. The concrete,
garbage-collected collecting semantics collect and a sound

3 2015/10/5

static analyzer will both be recovered from instantiations of
a generic monadic interpreter in Section 6.

The garbage collected semantics "gc is defined with
reachability functions KR and R which define transitively
reachable addresses. We write µ(X).f(X) as the least-fixed-
point of the function f . R is defined in terms of R-Frm

and R-Val , which define the immediately reachable locations
from a frame and value respectively. We omit the definition
of FV , which is the standard recursive definition for comput-
ing free variables of an expression.

3. Path and Flow Sensitivity in Analysis
We identify three specific variants of path and flow sen-
sitivity in analysis: path-sensitive, flow-sensitive and flow-
insensitive. Our framework exposes the essence of path and
flow sensitivity through a monadic effect interface in Sec-
tion 4, and we recover each of these variations through spe-
cific monad instances in Sections 7 and 8.

Consider a combination of if-statements in our example
language λIF (extended with let-bindings) where an analysis
cannot determine the value of N :

1 : let x := in

2 : if0(N){ 5 : let y :=

3 : if0(N){1}{2} 6 : if0(N){5}{6}

} else { in

4 : if0(N){3}{4}} 7 : exit(x, y)

Path-Sensitive A path-sensitive analysis tracks both data
and control flow precisely. At program points 3 and 4 the
analysis considers separate worlds:

3 : {N = 0} 4 : {N ̸= 0}

At program points 5 and 6 the analysis continues in two
separate, precise worlds:

5, 6 : {N = 0, x = 1}{N ̸= 0, x = 4}

At program point 7 the analysis correctly correlates x and y:

7 : {N = 0, x = 1, y = 5}{N ̸= 0, x = 4, y = 6}

Flow-Sensitive A flow-sensitive analysis collects a single
set of facts for each variable at each program point. At pro-
gram points 3 and 4, the analysis considers separate worlds:

3 : {N = 0} 4 : {N ̸= 0}

Each nested if-statement then evaluates only one side of the
branch, resulting in values 1 and 4. At program points 5 and 6
the analysis is only allowed one set of facts, so it must merge
the possible values that x and N could take:

5, 6 : {N ∈ Z, x ∈ {1, 4}}

The analysis then explores both branches at program point 6
resulting in no correlation between values for x and y:

7 : {N ∈ Z, x ∈ {1, 4}, y ∈ {5, 6}}

Flow-Insensitive A flow-insensitive analysis collects a
single set of facts about each variable which must hold true
for the entire program. Because the value of N is unknown
at some point in the program, the value of x must consider
both branches of the nested if-statement. This results in the
global set of facts giving four values to x:

{N ∈ Z, x ∈ {1, 2, 3, 4}, y ∈ {5, 6}}

4. Analysis Parameters
Before constructing the abstract interpreter we first design its
parameters. The interpreter, which we develop in Section 5,
will be designed such that variations in these parameters will
recover both concrete and a family of abstract interpreters,
which we show in Section 6. To do this we extend the ideas
developed in Van Horn and Might [23] with a new parameter
for path and flow sensitivity: the interpreter monad.

There will be three parameters to our abstract interpreter:

1. The monad, novel in this work, which captures control
effects and gives rise to path and flow sensitivity.

2. The abstract domain, which captures the abstraction of
values like integers or datatypes.

3. The abstraction for time, which captures call-site and
object sensitivities.

We place each of these parameters behind an abstract inter-
face and leave their implementations opaque when defining
the monadic interpreter in Section 5. Each parameter comes
with laws which can be used to reason about the generic in-
terpreter independent of a particular instantiation. Likewise,
an instantiation of the interpreter need only justify that each
parameter meets its local interface, which we justify in iso-
lation from the generic interpreter.

4.1 The Analysis Monad
The monad for the interpreter captures the effects of inter-
pretation. There are two effects in the interpreter: state and
nondeterminism. The state effect will mediate how the in-
terpreter interacts with state cells in the state space: Env ,
Store, KAddr , KStore and Time. The nondeterminism effect
will mediate branching in the execution of the interpreter.
Path and flow sensitivity will be recovered by altering how
these effects interact in a particular choice of monad.

We use monadic state and nondeterminism effects to ab-
stract over arbitrary relational small-step state-machine se-
mantics. State effects correspond to the components of the
state-machine and nondeterminism effects correspond to po-
tential nondeterminism in the relation’s definition.

We briefly review monad, state and nondeterminism op-
erators and their laws. For a more detailed presentation see
Liang et al. [12], Gibbons and Hinze [7] and Moggi [16].

4 2015/10/5

Monad Operators A type operator m is a monad if it sup-
ports bind , a sequencing operator, and its unit return:

m : Type → Type

return : ∀A,A→ m(A)

bind : ∀AB,m(A)→ (A→ m(B))→ m(B)

and obeys left unit, right unit and associativity laws.
We use semicolon notation for bind–e.g. x ← X ; k(x)

is sugar for bind(X)(k)–and we replace semicolons with line
breaks headed by do for multiline monadic definitions.

State Effect A type operator m supports the monadic state
effect for a type s if it supports get and put actions over s:

s : Type get : m(s)

m : Type → Type put : s→ m(1)

and obeys get-get, get-put, put-get and put-put laws [7].

Nondeterminism Effect A type operator m supports the
monadic nondeterminism effect if it supports an alternation
operator ⟨+⟩ and its unit mzero:

m : Type → Type

mzero : ∀A,m(A)

⟨+⟩ : ∀A,m(A)×m(A)→ m(A)

m(A) must have a join-semilattice structure, mzero must be a
zero for bind , bind must distributes through ⟨+⟩.

The interpreter in Section 5 will be defined generic to a
monad which supports monad operators, state effects and
nondeterminism effects. As a consequence, we do not ref-
erence an explicit configuration ς or collections of results;
instead we interact with an interface of state and nondeter-
minism effects. This level of indirection will be exploited in
Section 7, where different monads will meet the same effect
interface but yield different analysis properties.

4.2 The Abstract Domain
To expose the abstract domain we parameterize over Val , in-
troduction and elimination forms for Val , and the denotation
for primitive operators δ! ".

Val must be a join-semilattice with ⊥ and /:

⊥ : Val / : Val ×Val → Val

and respect the usual join-semilattice laws. Val must be a
join-semilattice so it can be merged in updates to Store to
preserve soundness.

Val must also support introduction and elimination be-
tween finite sets of concrete values Z and Clo:

int-I : Z→ Val if0 -E : Val → P(Bool)

clo-I : Clo → Val clo-E : Val → P(Clo)

Introduction functions inject concrete values into abstract
values. Elimination functions project abstract values into a
finite set of concrete observations. For example, we do not
require that abstract values support elimination to integers,
only to finite observation of comparison with zero. The laws
for the introduction and elimination functions induce a Ga-
lois connection between P(Z) and Val:

{true} ⊆ if0 -E(int-I (i)) if i = 0

{false} ⊆ if0 -E(int-I (i)) if i ̸= 0
⊔

b∈if0 -E(v)
i∈θ(b)

int-I (i) ⊑ v

where θ(true) := {0}

θ(false) := {i | i ∈ Z ; i ̸= 0}

Closures must follow similar laws, inducing a Galois con-
nection between P(Clo) and Val:

{c} ⊆ clo-E(cloI(c))
⊔

c∈clo-E(v)

clo-I (c) ⊑ v

Finally, δ! " must be sound w.r.t. the Galois connection be-
tween concrete values and Val:

int-I (i1 + i2) ⊑ δ!+"(int-I (i1), int-I (i2))

int-I (i1 − i2) ⊑ δ!−"(int-I (i1), int-I (i2))

Supporting additional primitive types like booleans, lists,
or arbitrary inductive datatypes is analogous. Introduction
functions inject the type into Val and elimination functions
project a finite set of discrete observations. Introduction,
elimination and δ operators must all be sound and complete
following a Galois connection discipline.

4.3 Abstract Time
The interface we use for abstract time is familiar from Van
Horn and Might [23], which introduces abstract time as a
single parameter to control various forms of context sen-
sitivity, and Smaragdakis et al. [22], which instantiates the
parameter to achieve various forms of object sensitivity. We
only demonstrate call-site sensitivity in this presentation; our
semantics-independent Haskell library supports object sen-
sitivity following the same methodology.

Abstract time need only support a single operation: tick :

Time : Type tick : Exp×KAddr ×Time → Time

Remarkably, we need not state laws for tick . The interpreter
will merge values which reside at the same address to pre-
serve soundness. Therefore, any supplied implementations
of tick is valid from a soundness perspective. However, dif-
ferent choices in tick will yield different trade-offs in preci-
sion and performance of the abstract interpreter.

5 2015/10/5

Am! " : Atom → m(Val)

Am!i" := return(int-I (i))

Am!x" := do

ρ← get-Env ; σ ← get-Store

if x ∈ ρ then return(σ(ρ(x))) else return(⊥)

Am!λ(x).e" := ρ← get-Env ; return(clo-I (⟨λ(x).e, ρ⟩))

stepm : Exp → m(Exp)

stepm(e) := do

tickm(e) ; ρ← get-Env

e′ ← case eof

e1 ⊙ e2 → push(⟨!⊙ e2, ρ⟩) ; return(e1)

if0(e1){e2}{e3}→ push(⟨if0(!){e2}{e3}, ρ⟩) ; return(e1)

a→ do

v ← Am!a" ; fr ← pop

case fr of

⟨!⊙ e, ρ′⟩ → put-Env(ρ′) ; push(⟨v ⊙ !⟩) ; return(e)

⟨v′ @ !⟩ → do

τ ← get-Time ; σ ← get-Store

⟨λ(x).e, ρ′⟩ ← ↑p(clo-E(v′))

put-Env(ρ′[x)→ (x, τ)])

put-Store(σ / [(x, τ))→ v]) ; return(e)

⟨v′ ⊕ !⟩ → return(δ!⊕"(v′, v))

⟨if0(!){e1}{e2}, ρ′⟩ → do

put-Env(ρ′) ; b← ↑p(if0 -E(v)) ; refine(a, b)

if(b) then return(e1) else return(e2)

gc(e′) ; return(e′)

Figure 4. Monadic Semantics

5. The Interpreter
We now present a monadic interpreter for λIF parameterized
over m, Val and Time from Section 4. We instantiate these
parameters to obtain an analysis in Section 6.

We translate A! ", a partial denotation function, to Am! ",
a total monadic denotation function, shown in Figure 4.

Next we implement stepm, a monadic small-step function
for compound expressions, also shown in Figure 4. stepm is
a translation of " from a relation to a monadic function
with state and nondeterminism effects.

stepm uses push and pop for manipulating stack frames, ↑p
for lifting values from P into m, refine for value refinement
after branching, and a monadic version of tick called tickm,
each shown in Figure 5. Frames are pushed when the control

push : Frame → m(1)

push(fr) := do

κl← get-KAddr ; κσ ← get-KStore ; κl′ ← get-Time

put-KStore(κσ / [κl′)→ {fr :: κl}]) ; put-KAddr(κl′)

pop : m(Frame)

pop := do

κl← get-KAddr ; κσ ← get-KStore ; fr :: κl′ ← ↑p(κσ(κl))

put-KAddr(κl′) ; return(fr)

↑p : ∀A,P(A)→ m(A)

↑p({a1..an}) := return(a1) ⟨+⟩ .. ⟨+⟩ return(an)

refine : Atom ×Bool→ m(1)

refine(i, b) := return(1)

refine(x, b) := do

ρ← get-Env ; σ ← get-Store

put-Store(σ[ρ(x))→ b])

tickm : Exp → m(1)

tickm(e) := do

τ ← get-Time ; κl← get-KAddr

put-Time(tick(e,κl, τ))

gc : Exp → m(1)

gc(e) := do

ρ← get-Env ; σ ← get-Store

κl← get-KAddr ; κσ ← get-KStore

put-KStore({κl)→ κσ(κl) | κl ∈ KR(κl,κσ)})

put-Store({l)→ σ(l) | l ∈ R(e, ρ,σ,κl,κσ))

Figure 5. Monadic helper functions

expression e is compound and popped when e is atomic. The
interpreter looks deterministic, however the nondeterminism
is hidden behind ↑p and monadic bind operations x← e1 ; e2.
The use of refine enforces a limited form of path-condition,
and will yield each variation of path and flow sensitivity
given the appropriate monad.

We implement abstract garbage collection gc in a general
way using the monadic effect interface, also shown in Fig-
ure 5. R and KR are as defined in Section 2. Remarkably,
this single implementation supports instantiation to analyses
with varying path and flow sensitivities.

Preserving Soundness In the monadic interpreter, updates
to both the data-store and stack-store must merge rather than
overwrite values. To support / for the stack store we redefine
the domain to map to a powerset of frames:

κσ ∈ KStore : KAddr → P(Frame ×KAddr)

6 2015/10/5

v ∈ Val := P(Clo ∪ Z)

τ ∈ Time := (Exp×KAddr)∗

int-I : Z→ Val

int-I (i) := {i}

if0 -E : Val→ P(Bool)

if0 -E(v) := {true | 0 ∈ v} ∪ {false | ∃i ∈ v ; i ̸= 0}

clo-I : Clo → Val

clo-I (c) := {c}

clo-E : Val→ P(Clo)

clo-E(v) := {c | c ∈ v}

δ : Val×Val→ Val

δ!+"(v1, v2) := {i1 + i2 | i1 ∈ v1 ; i2 ∈ v2}

δ!−"(v1, v2) := {i1 − i2 | i1 ∈ v1 ; i2 ∈ v2}

tick : Exp×Time→ Time

tick(e,κl, τ) := (e,κl) :: τ

Figure 6. Concrete Interpreter Values and Time

Execution In the concrete semantics, execution takes the
form of a least-fixed-point computation over the collecting
semantics collect. This in general requires a join-semilattice
structure for some Σ and a transition system Σ → Σ. How-
ever, we no longer have a transition system Σ → Σ; we have
a monadic function Exp → m(Exp) which cannot be iterated
to least-fixed-point to execute the analysis.

To solve this we require the existence of a Galois connec-
tion between monadic actions and some transition system:
Σ → Σ −−−−−−→←−−−−−−

αΣ↔m

γΣ↔m

Exp → m(Exp). This Galois connection al-
lows us to implement the analysis by transporting our inter-
preter to the transition system Σ → Σ through γΣ↔m, and
then iterating to fixed-point in Σ. Furthermore, it serves to
transport other Galois connections as part of our correct-
ness framework. This will allow us to construct Galois con-
nections between monads m1 −−−−→←−−−−

αm

γm

m2 and derive Galois

connections between transition systems Σ1 −−−−→←−−−−
αΣ

γΣ

Σ2.
An execution of our interpreter is then the least-fixed-

point iteration of stepm transported through γΣ↔m:

analysis := µ(X).X / ς0 / γΣ↔m(stepm)(X)

where ς0 is the injection of the initial program e0 into Σ and
γΣ↔m has type (Exp → m(Exp))→ (Σ→ Σ).

6. Recovering Analyses
In Section 5, we defined a monadic interpreter with the unin-
stantiated parameters from Section 4: m, Val and Time. To
recover a concrete interpreter, we instantiate these parame-

ψ ∈ Ψ := Env ×KAddr×KStore×Time

M(A) := Ψ× Store→ P(A×Ψ× Store)

ς ∈ Σ := P(Exp×Ψ× Store)

return : ∀A,A→M(A)

return(x)(ψ, s) := {(x,ψ, s)}

bind : ∀AB,M(A)→ (A→M(B))→M(B)

bind(X)(f)(ψ,σ) :=
⋃

(x,ψ′,σ′)∈X(ψ,σ)

f(x)(ψ′,σ′)

get-Env : M(Env)

get-Env(⟨ρ,κl,κσ, τ⟩,σ) := {(ρ, ⟨ρ,κl,κσ, τ⟩,σ)}

put-Env : Env→ P(1)

put-Env(ρ′)(⟨ρ,κl,κσ, τ⟩,σ) := {(1, ⟨ρ′,σ,κ, τ⟩,σ)}

mzero : ∀A,M(A)

mzero(ψ,σ) := {}

⟨+⟩ : ∀A,M(A)×M(A)→M(A)

(X1⟨+⟩X2)(ψ,σ) := X1(ψ,σ) ∪X2(ψ,σ)

αΣ↔M : (Σ→ Σ)→ (Exp →M(Exp))

αΣ↔M(f)(e)(ψ,σ) := f({(e,ψ,σ)})

γΣ↔M : (Exp →M(Exp))→ (Σ→ Σ)

γΣ↔M(f)(eψσ∗) :=
⋃

(e,ψ,σ)∈eψσ∗
f(e)(ψ,σ)

Figure 7. Concrete Interpreter Monad

ters to concrete components M, Val and Time, and to re-
cover an abstract interpreter we instantiate them to abstract
components M̂, V̂al and T̂ime. Furthermore, the concrete
transition system Σ induced by M will recover the collect-
ing semantics, which is our final target of abstraction, and
the resulting analysis will take the form of an abstract tran-
sition system Σ̂ induced by M̂.

6.1 Recovering a Concrete Interpreter
To recover a concrete interpreter, we instantiate the generic
monadic interpreter from Section 5 with concrete parameters
Val, δ, Time and M, shown in Figures 6 and 7.

The Concrete Domain We instantiate Val to Val, a power-
set of concrete values. Val has precise introduction and elim-
ination functions int-I , if0 -E , clo-I and clo-E , and primitive
operator denotation δ.

Concrete Time We instantiate Time to Time, which cap-
tures the execution context as a sequence of previously vis-
ited expressions. tick is then a cons operation.

The Concrete Monad We instantiate m to M, a powerset
of concrete state space components. Monadic operators bind

7 2015/10/5

and return encapsulate both state-passing and set-flattening.
State effects return singleton sets and nondeterminism ef-
fects are implemented with set union.

Concrete Execution To execute the interpreter we estab-
lish the Galois connection Σ → Σ −−−−−−→←−−−−−−

αΣ↔M

γΣ↔M

Exp → M(Exp)

and transport the monadic interpreter through γΣ↔m. The
injection for a program e0 into Σ is ς0 := {⟨e0,⊥,⊥, •,⊥, •⟩}.

6.2 Recovering an Abstract Interpreter
To recover an abstract interpreter we instantiate the generic
monadic interpreter from Section 5 with abstract parameters
V̂al, δ̂, T̂ime and M̂, shown in Figure 8. The abstract monad
operators, effects and transition system are not shown for M̂;
they are identical to M but with abstract components.

The Abstract Domain We pick a simple abstraction for
integers, {−, 0,+}, although our technique scales to other
abstract domains. V̂al is defined as a powerset of abstract
values. V̂al has introduction and elimination functions ̂int-I ,
îf0 -E , ̂clo-I and ĉlo-E , and primitive operator denotation δ̂.
îf0 -E and δ̂ must be conservative, returning an upper bound
of the precise results returned by their concrete counterparts.

Abstract Time Abstract time T̂ime captures an approxima-
tion of the execution context as a finite sequence of previ-
ously visited expressions. t̂ick is a cons operation followed
by k-truncation, yielding a kCFA analysis [23].

The Abstract Monad and Execution The abstract monad
M̂ is identical to M up to the definition of Ψ̂. The induced
state space Σ̂ is finite, and its least-fixed-point iteration will
give a sound and computable analysis.

6.3 End-to-End Correctness
The end-to-end correctness of the abstract instantiation of
the interpreter is factored into three steps: (1) proving the
parameterized monadic interpreter correct for any instantia-
tion of m, Val and Time; (2) constructing Galois connections
M −−−−→←−−−−

αm

γm

M̂, Val −−−→←−−−
αv

γv

V̂al and Time −−−→←−−−
αt

γt

T̂ime piece-
wise; and (3) transporting the combination of (1) and (2)
from the monadic function space A → m(B) to its induced
transition system Σ→ Σ. The benefit of our approach is that
the first step is proved once and for all (for a particular se-
mantics) against any instantiation of m, Val and Time using
the reasoning principles established in Section 4. Further-
more the second step can be proved in isolation of the first,
and the construction of the third step is fully systematic.

We do not give proofs for (1) or the abstractions for Val

and Time for (2) in this paper, although the details can be
found in prior work [3, 23]. Rather, we give definitions and
proofs for the monad abstractions for (2) and their system-
atic mappings to transition systems for (3) through a compo-
sitional framework in Section 8.

The final correctness of the abstract interpreter is estab-
lished as a partial order relationship between an abstraction

v ∈ V̂al := P(Ĉlo ∪ {−, 0,+})

τ ∈ T̂ime := (Exp×KAddr)∗k

ψ ∈ Ψ̂ := Ênv × K̂Addr× K̂Store× T̂ime

M̂(A) := Ψ̂× Ŝtore→ P(A× Ψ̂× Ŝtore)

ς ∈ Σ̂ := P(Exp×Ψ̂× Ŝtore)

̂int-I : Z→ V̂al ̂int-I (i) :=

{−} if i < 0

{0} if i = 0

{+} if i > 0

îf0 -E : V̂al→ P(Bool) îf0 -E(v) :=
{true | 0 ∈ v} ∪

{false | − ∈ v ∨+ ∈ v}

̂clo-I : Clo → V̂al ̂clo-I (c) := {c}

ĉlo-E : V̂al→ P(Clo) ĉlo-E(v) := {c | c ∈ v}

δ̂ : V̂al× V̂al→ V̂al

δ̂!+"(v1, v2) :=

{i | 0 ∈ v1 ∧ i ∈ v2} ∪ {i | i ∈ v1 ∧ 0 ∈ v2}

∪ {+ | + ∈ v1 ∧+ ∈ v2} ∪ {− | − ∈ v1 ∧− ∈ v2}

∪ {−, 0,+ | + ∈ v1 ∧− ∈ v2}

∪ {−, 0,+ | − ∈ v1 ∧+ ∈ v2}

δ̂!−"(v1, v2) := ... analogous ...

t̂ick : Exp×T̂ime→ T̂ime

t̂ick(e,κl, τ) := ⌊(e,κl) :: τ⌋k

Figure 8. Abstract Interpreter Parameters

of γΣ↔M(stepm[M]), which recovers the collecting seman-
tics, and γΣ̂↔M̂(stepm[M̂]), the induced abstract semantics:

Proposition 1.

αΣ(γΣ↔M(stepm[M])) ⊑ γΣ̂↔M̂(stepm[M̂])

The left-hand-side of the relationship is the induced “best
specification” of the collecting semantics via Galois connec-
tion, and should be familiar from the literature on abstract in-
terpretation [3, 5, 18]. This end-to-end correctness statement
will be justified in a compositional setting in Section 8.

7. Varying Path and Flow Sensitivity
Sections 5 and 6 describe the construction of a path-sensitive
analysis using our framework. In this section, we show an al-
ternate definition for M̂ which yields a flow-insensitive anal-
ysis. Section 8 will generalize the definitions from this sec-
tion into compositional components (monad transformers) in
addition to introducing another definition for M̂ which yields
a flow-sensitive analysis.

Before going into the details of the flow-insensitive
monad, we wish to build intuition regarding what one would

8 2015/10/5

expect from such a development. Recall the path-sensitive
monad M̂ and its state space Σ̂ from section 6:

M̂(Exp) := Ψ̂× Ŝtore→ P(Exp×Ψ̂× Ŝtore)

Σ̂(Exp) := P(Exp×Ψ̂× Ŝtore)

where Ψ := Ênv × K̂Addr × K̂Store × T̂ime. This is path-
sensitive because Σ̂(Exp) can represent arbitrary relations
between (Exp×Ψ) and Ŝtore.

As discussed in Section 3, a flow-sensitive analysis will
give a single set of facts per program point. This results in
the following monad M̂

fs and state space Σ̂
fs which encode

finite maps to Ŝtore rather than relations:

M̂
fs

(Exp) := Ψ̂× Ŝtore→ [(Exp×Ψ̂))→ Ŝtore]

Σ̂
fs

(Exp) := [(Exp×Ψ̂))→ Ŝtore]

Finally, a flow-insensitive analysis must contain a global set
of facts for each variable, which we achieve by pulling Ŝtore

out of the powerset:

M̂
fi
(Exp) := Ψ̂× Ŝtore→ P(Exp×Ψ̂)× Ŝtore

Σ̂
fi
(Exp) := P(Exp×Ψ̂)× Ŝtore

These three resulting structures, Σ̂, Σ̂
fs and Σ̂

fi, cap-
ture the essence of path-sensitive, flow-sensitive and flow-
insensitive transition systems, and arise naturally from M̂,
M̂

fs and M̂
fi, which each have monadic structure. We only

describe M̂
fi directly in this section; in Section 8 we de-

scribe a more compositional set of building blocks, from
which M̂, M̂fs and M̂

fi are recovered.

7.1 Flow Insensitive Monad
We show the definitions for monad operators, state effects,
nondeterminism effects, and mapping to transition system
for the flow-insensitive monad M̂

fi in Figure 9.
The b̂ind

fi operation performs the global store merg-
ing required to capture a flow-insensitive analysis. The unit
for b̂ind

fi returns one nondeterminism branch and a single
global store. State effects ̂get-Env

fi and ̂put-Env
fi return

a single branch of nondeterminism. Nondeterminism opera-
tions union the powerset and join the store pairwise. Finally,
the Galois connection relating M̂

fi to the state space Σ̂
fi also

computes powerset unions and store joins pairwise.
Instantiating the generic monadic interpreter with M, M̂

and M̂
fi yields a concrete interpreter, path-sensitive abstract

interpreter, and flow-insensitive abstract interpreter respec-
tively, purely by changing the underlying monad. Further-
more, the proofs of abstraction between interpreters and their
induced transition systems is isolated to a proof of abstrac-
tion between monads.

8. A Compositional Monadic Framework
In our development thus far, any modification to the inter-
preter requires redesigning the monad M̂ and constructing

M̂
fi
(A) := Ψ̂× Ŝtore→ P(A× Ψ̂)× Ŝtore

ς ∈ Σ̂
fi

:= P(Exp×Ψ̂)× Ŝtore

̂returnfi
: ∀A,A→ M̂

fi
(A)

̂returnfi
(x)(ψ,σ) := ({x,ψ},σ)

b̂ind
fi

: ∀AB, M̂
fi
(A)→ (A→ M̂

fi
(B))→ M̂

fi
(B)

b̂ind
fi
(X)(f)(ψ,σ) :=

({yψ11..yψ1m1 ..yψn1..yψnmn},σ1 / .. / σn) where

({(x1,ψ1)..(xn,ψn)},σ′) := X(ψ,σ)

({yψi1..yψimi},σi) := f(xi)(ψi,σ
′)

̂get-Env
fi

: M̂
fi
(Ênv)

̂get-Env
fi
(⟨ρ,κ, τ⟩,σ) := ({(ρ, ⟨ρ,κ, τ⟩)},σ)

̂put-Env
fi

: Ênv→ M̂
fi
(1)

̂put-Env
fi
(ρ′)(⟨ρ,κ, τ⟩,σ) := ({(1, ⟨ρ′,κ, τ⟩)},σ)

m̂zerofi : ∀A, M̂
fi
(A)

m̂zerofi(ψ,σ) := ({},⊥)

⟨̂+⟩
fi

: ∀A, M̂
fi
(A)× M̂

fi
(A)→ M̂

fi
A

(X1 ⟨+⟩X2)(ψ,σ) := (xψ∗
1 ∪ xψ∗

2 ,σ1 / σ2) where

(xψ∗
i ,σi) := Xi(ψ,σ)

αΣ̂↔M̂
fi

: (Σ̂
fi → Σ̂

fi
)→ (Exp → M̂

fi
(Exp))

αΣ̂↔M̂
fi

(f)(e)(ψ,σ) := f({(e,ψ)},σ)

γΣ̂↔M̂
fi

: (Exp → M̂
fi
(Exp))→ (Σ̂

fi → Σ̂
fi
)

γΣ̂↔M̂
fi

(f)(eψ∗,σ) :=

({eψ11..eψn1..eψnmn},σ1 / .. / σn) where

{(e1,ψ1)..(en,ψn)} := eψ∗

({eψi1..eψimi},σi) := f(ei)(ψi,σ)

Figure 9. Flow Insensitive Monad Parameter

new proofs relating M̂ to M. We want to avoid reconstructing
complicated monads for interpreters, especially as languages
and analyses grow and change. Even more, we want to avoid
reconstructing complicated proofs that such changes require.
Toward this goal, we introduce a compositional framework
for constructing monads which are correct-by-construction
by extending the well-known structure of monad transformer
to that of Galois transformer.

Galois transformers are monad transformers which trans-
port Galois connections and mappings to an executable tran-
sition system. We make this definition precise and prove
our Galois transformers correct in Section 8.4. For now we
present monad transformer operations augmented with the
computational part of Galois transformers: the mapping to a

9 2015/10/5

transition system, which we called αΣ↔M, γΣ↔M, αΣ̂↔M̂
fi

and γΣ̂↔M̂
fi

in Sections 6 and 7.
There are two monadic effects used in our monadic in-

terpreter: state and nondeterminism. For state, we review
the state monad transformer St[s], which is standard[12, 16],
however we also show how St[s] maps to a transition system
and obeys Galois transformer properties. For nondetermin-
ism we develop two new monad transformers: Pt and F t[s].
These monad transformers are fully general purpose, even
outside the context of program analysis, and are novel in this
work. Finally we show that Pt and F t[s] map to transition
systems and obey Galois transformer properties.

To create a monad with various state and nondeterminism
effects, one need only construct some composition of these
three monad transformers. Implementations and proofs for
monadic sequencing, state effects, nondeterminism effects,
and mappings to an executable transition system will come
entirely for free. This means that for a language which has
a different state space than the example in this paper, no
added effort is required to construct a monad stack for that
language; it will merely require a different selection and
permutation of the same monad transformer components.

Path and flow sensitivity properties arise from the order
of composition of state and nondeterminism monad trans-
formers. Placing state after nondeterminism (St[s] ◦ Pt or
St[s]◦F t[s′]) will result in s being path-sensitive. Placing state
before nondeterminism (Pt◦St[s] or F t[s′]◦St[s]) will result in
s being flow-insensitive. Finally, when F t[s] is used in place
of St[s] ◦Pt or Pt ◦St[s], s will be flow-sensitive. The combi-
nation of all three sensitivities is M := St[s1] ◦ F t[s2] ◦ St[s3]

which induces the transition system Σ(Exp) := [(Exp×s1))→
s2] × s3, where s1 is path-sensitive, s2 is flow-sensitive, and
s3 is flow-insensitive. Using St[s], Pt and F t[s], one can eas-
ily choose which components of the state space should be
path-sensitive, flow-sensitive or flow-insensitive, purely by
the order of monad composition.

In the following definitions we must refer to bind , return
and other operations from the underlying monad, which we
notate bindm, returnm,←m, etc.

8.1 State Galois Transformer
The state Galois transformer is shown in Figure 10. returnSt ,
bindSt , getSt and putS

t require that m be a monad. mzeroSt

and ⟨+⟩S
t require that m be a monad with nondeterminism

effects. And finally, αSt and γS
t require that m maps to Σm

via Galois connection Σ(A)→ Σ(B) −−−−→←−−−−
αm

γm

A→ m(B).

8.2 Nondeterminism Galois Transformer
The nondeterminism Galois transformer is shown in Fig-
ure 11. Crucially, returnPt and bindPt require that m be both
a monad and a join-semilattice functor. We attribute this re-
quirement (and the difficulty of expressing it in Haskell) as a
possible reason why it has not been discovered thus far. This
functorality of m is instantiated with P() using the usual

St[s] : (Type → Type)→ (Type → Type)

St[s](m)(A) := s→ m(A× s)

ΠSt
[s] : (Type → Type)→ (Type → Type)

ΠSt
[s](Σ)(A) := Σ(A× s)

returnSt
: ∀A,A→ St[s](m)(A)

returnSt
(x)(s) := returnm(x, s)

bindSt
: ∀AB,St[s](m)(A)→ (A→ St[s](m)(B))→ St[s](m)(B)

bindSt
(X)(f)(s) := (x, s′)←m X(s) ; f(x)(s′)

getS
t
: St[s](m)(s)

getS
t
(s) := returnm(s, s)

putS
t
: s→ St[s](m)(1)

putS
t
(s′)(s) := returnm(1, s′)

mzeroSt
: ∀A,St[s](m)(A)

mzeroSt
(s) := mzerom

⟨+⟩S
t

: ∀A,St[s](m)(A)× St[s](m)(A)→ St[s](m)(A)

(X1 ⟨+⟩S
t
X2)(s) := X1(s) ⟨+⟩m X2(s)

αSt
: ∀AB,

(ΠSt
[s](Σm)(A)→ ΠSt

[s](Σm)(B))→ (A→ St[s](m)(B))

αSt
(f)(x)(s) := αm(f)(x, s)

γS
t
: ∀AB,

(A→ St[s](m)(B))→ (ΠSt
[s](Σm)(A)→ ΠSt

[s](Σm)(B))

γS
t
(f) := γm(λ(x, s).f(x)(s))

Figure 10. State Galois Transformer

join-semilattice on powersets: {} for ⊥ and ∪ for /. getPt and
putP

t require that m be a monad with state effects. Like the
state Galois transformer, αPt and γPt require that m maps to
Σm via Galois connection.

Lemma 1. [Pt laws] bindPt and returnPt satisfy monad
laws, getPt and putP

t satisfy state monad laws, and mzeroPt

and ⟨+⟩Pt satisfy nondeterminism monad laws.

See our proofs in the extended version of the paper, where
the key lemma in proving monad laws is the join-semilattice
functorality of m, namely that:

returnm(x / y) = returnm(x) /m returnm(y)

bindm(X / Y)(f) = bindm(X)(f) /m bindm(Y)(f)

8.3 Flow Sensitivity Galois Transformer
The flow sensitivity monad transformer, shown in Figure
12, is a unique monad transformer that combines state and
nondeterminism effects, and does not arise naturally from

10 2015/10/5

Pt : (Type → Type)→ (Type → Type)

Pt(m)(A) := m(P(A))

ΠPt
: (Type → Type)→ (Type → Type)

ΠPt
(Σ)(A) := Σ(P(A))

returnPt
: ∀A,A→ Pt(m)(A)

returnPt
(x) := returnm({x})

bindPt
: ∀AB,Pt(m)(A)→ (A→ Pt(m)(B))→ Pt(m)(B)

bindPt
(X)(f) := do

{x1..xn}←m X

f(x1) /m .. /m f(xn)

getP
t
: Pt(m)(s)

getP
t
:= s←m getm ; returnm({s})

putP
t
: s→ Pt(m)(1)

putP
t
(s) := u←m putm(x) ; returnm({u})

mzeroPt
: ∀A,Pt(m)(A)

mzeroPt
:= ⊥m

⟨+⟩P
t

: ∀A,Pt(m)(A)xPt(m)(A)→ Pt(m)(A)

X1 ⟨+⟩P
t
X2 := X1 /m X2

αPt
: ∀AB,

(ΠPt
(Σm)(A)→ ΠPt

(Σm)(B))→ (A→ Pt(m)(B))

αPt
(f)(x) := αm(f)({x})

γP
t
: ∀AB,

(A→ Pt(m)(B))→ (ΠPt
(Σm)(A)→ ΠPt

(Σm)(B))

γP
t
(f) :=

γm(λ({x1..xn}).f(x1) /m .. /m f(xn))

Figure 11. Nondeterminism Galois Transformer

composing vanilla nondeterminism and state transformers.
The finite map in the definition of F t[s] is what yields flow
sensitivity when instantiated to a monadic interpreter. After
instantiation, F t[s](m)(A) will be Ŝtore→ [Exp×Ψ̂→ Ŝtore],
which maps each possible expression and context to a unique
abstract store.

Like nondeterminism, returnF t and bindF t require that
m be both a monad and a join-semilattice functor. This
functorality of m is instantiated with [)→ s] using the usual
join-semilattice on finite maps: {} for ⊥ and:

Y / Z := {x)→ y / z | {x)→ y} ∈ X ∧ {x)→ z} ∈ Y }

getP
t and putP

t require that m be a monad. Like the non-
determinism Galois transformer, αPt and γPt require that m
maps to Σm via Galois connection.

F t[s] : (Type → Type)→ (Type → Type)

F t[s](m)(A) := s→ m([A)→ s])

ΠF t
[s] : (Type → Type)→ (Type → Type)

ΠF t
[s](Σ)(A) := Σ([A)→ s])

returnF t
: ∀A,A→ F t[s](m)(A)

returnF t
(x)(s) := returnm({x)→ s})

bindF t
: ∀AB,F t[s](m)(A)→ (A→F t[s](m)(B))→F t[s](m)(B)

bindF t
(X)(f)(s) := do

{x1)→ s1..xn)→ sn}←m X(s)

f(x1)(s1) /m .. /m f(xn)(sn)

getF
t
: F t[s](m)(s)

getF
t
(s) := returnm{s)→ s}

putF
t
: s→ F t[s](m)(1)

putF
t
(s′)(s) := returnm{1)→ s′}

mzeroF t
: ∀A,F t[s](m)(A)

mzeroF t
(s) := ⊥m

⟨+⟩F
t

: ∀A,F t[s](m)(A)xF t[s](m)(A)→ F t[s](m)(A)

(X1 ⟨+⟩F
t
X2)(s) := X1(s) /m X2(s)

αF t
: ∀AB,

(ΠF t
[s](Σm)(A)→ ΠF t

[s](Σm)(B))→ (A→ F t[s](m)(B))

αF t
(f)(x)(s) := αm(f)({x)→ s})

γF
t
: ∀AB,

(A→ F t[s](m)(B))→ (ΠF t
[s](Σm)(A)→ ΠF t

[s](Σm)(B))

γF
t
(f) :=

γm(λ({x1)→ s1..xn)→ sn}).f(x1)(s1) /m .. /m f(xn)(sn))

Figure 12. Flow Sensitivity Galois Transformer

Lemma 2. [F t laws] bindF t and returnF t satisfy monad
laws, getF t and putF

t satisfy state monad laws, and mzeroF t

and ⟨+⟩F t satisfy nondeterminism monad laws.

See our proofs in the extended version of the paper. Monad
and nondeterminism laws are are analogous to those for
nondeterminism, and also rely on the join-semilattice func-
torailty of m. State monad laws are proved by calculation.

8.4 Galois Transformers
The capstone of our framework is the fact that monad trans-
formers St[s], Pt and F t[s] are also Galois transformers.

Definition 1. A monad transformer T is a Galois trans-
former with transition system Π if:

11 2015/10/5

A→ m2(B) A→ T (m2)(B)

A→ m1(B) A→ T (m1)(B)

Σ2(A)→ Σ2(B) Π(Σ2)(A)→ Π(Σ2)(B)

Σ1(A)→ Σ1(B) Π(Σ1)(A)→ Π(Σ1)(B)

T [m2]

T [m1]

Π[Σ2]

Π[Σ1]

Figure 13. Galois Transformer Commuting Cube of Abstractions

1. T transports Galois connections between monads m1 and
m2 into Galois connections between T (m1) and T (m2):

A→ m2(B) A→ T (m2)(B)

A→ m1(B) A→ T (m1)(B)

γm

T [m2]

αm

T [m1]

T [γm]T [αm]

T [m] must be monotonic, and T must commute with Ga-
lois connections, that is for all f : A→ m1(B):

T [m2](α
m(f)) = T [αm](T [m1](f))

2. Π transports Galois connections between induced transi-
tion systems Σ1 and Σ2 into Galois connections between
Π(Σ1) and Π(Σ2):

Σ2(A)→ Σ2(B) Π(Σ2)(A)→ Π(Σ2)(B)

Σ1(A)→ Σ1(B) Π(Σ1)(A)→ Π(Σ1)(B)

γΣ

Π[Σ2]

αΣ

Π[Σ1]

Π[γΣ]Π[αΣ]

Π[Σ] must be monotonic, and Π must commute with Ga-
lois connections, that is for all f : Σ1(A)→ Σ1(B):

Π[Σ2](α
Σ(f)) = Π[αΣ](Π[Σ1](f))

3. T and Π transport transition system mappings between m

and Σ into transition system mappings between T (m) and
Π(Σ):

A→ m(B) A→ T (m)(B)

Σ(A)→ Σ(B) Π(Σ)(A)→ Π(Σ)(B)

γΣ↔m

T [m]

αΣ↔m

Π[Σ]

T [γΣ↔m]T [αΣ↔m]

T [γΣ↔m] must commute asymmetrically (in the partial
order) with T and Π, that is for all functions f : A →
m(B):

Π[Σ](γΣ↔m(f)) ⊑ T [γΣ↔m](T [m](f))

Lemma 3 (Galois Transformer Properties). St[s], Pt and
F t[s] are Galois transformers.

Definitions for αΣ↔γ and γΣ↔γ from property (3) are shown
in Figures 10, 11 and 12. Definitions of other Galois connec-
tions and commutativity proofs are given in the appendix.

These three properties of Galois transformers snap to-
gether in a three-dimensional diagram, shown in Figure 13
which relates abstractions between monads m1 and m2 and
their transition systems Σ1 and Σ2 to their actions under T

and Π. The left-hand side of the cube is a commuting square
of abstractions between m1, m2, Σ1 and Σ2. The right-hand
side of the cube is constructed from the composition of prop-
erties (1) through (3) as the front, top, back, and bottom faces
of the cube, and is a commuting square of abstractions be-
tween T (m1), T (m2), Π(Σ1) and Π(Σ2). The whole cube com-
mutes, by combining the commuting properties of the left
face and the commuting properties of (1) through (3).

Theorem 1. If T is a Galois transformer with transition
system Π, given a commuting square of abstractions between
monads m1 and m2 and their transition systems Σ1 and Σ2, T
and Π construct a commuting square of abstractions between
monads T (m1) and T (m2) and their transition systems Π(Σ1)

and Π(Σ2).

The proof is the composition of Galois transformer proper-
ties, as shown in the Figure 13.

The consequence of this theorem is that any two com-
positions of Galois transformers T1 ◦ .. ◦ Tn and U1 ◦ .. ◦ Un

where Ui is an abstraction of Ti will yield a commuting
square of abstractions between monads (T1 ◦ .. ◦ Tn)(ID)

and (U1 ◦ .. ◦ Un)(ID) and their induced transition systems
(ΠT1 ◦ ... ◦ ΠTn)(ID) and (ΠU1 ◦ ... ◦ ΠUn)(ID). This is the
first step in proving the resulting abstract interpreter correct;
we need to establish a commuting square of abstractions be-
tween a concrete monad, an abstract monad, and their in-
duced concrete and abstract transition systems.

8.5 End-to-End Correctness with Galois Transformers
In the setting of abstract interpretation, we instantiate the
Galois transformer framework described above with two
compositions of monad transformers yielding a commuting
square of abstractions between the concrete monad M, the

12 2015/10/5

abstract monad M̂, and concrete and abstract transition sys-
tems Σ and Σ̂:

Exp→M(Exp) Exp→ M̂(Exp)

Σ(Exp)→ Σ(Exp) Σ̂(Exp)→ Σ̂(Exp)

αM

γM

αΣ

γΣ

γΣ↔MαΣ↔M γΣ̂↔M̂αΣ̂↔M̂

This diagram shows how to relate monadic interpreters to
transition systems (the vertical axis of the diagram), and
concrete semantics to abstract semantics (the horizontal axis
of the diagram). The top half is where we write the monadic
interpreter, and the bottom half is where we execute the
analysis as the least-fixed point of a transition system.

We use this commuting square to systematically relate
a recovered collecting semantics with the induced abstract
transition system in the following theorem:

Theorem 2. Given a commuting square of abstraction be-
tween M, M̂, Σ and Σ̂, and a generic monadic interpreter
stepm, if collect = γΣ↔M(stepm[M]) recovers the collecting
semantics, then analysis = γΣ̂↔M̂(stepm[M̂]) is a sound ab-
straction of the collecting semantics.

Proof. Given that stepm is monotonic in the monad parame-
ter m, instantiating it with M and M̂ will result in:

αM(stepm[M]) ⊑ stepm[M̂]

Transporting through γΣ̂↔M̂, which is monotonic by virtue
of forming a Galois connection with αΣ̂↔M̂, we have:

(1) γΣ̂↔M̂(αM(stepm[M])) ⊑ γΣ̂↔M̂(stepm[M̂]) = analysis

Next, we abstract the recovered collecting semantics to
form its best specification for abstraction:

(2) αΣ̂(collect) = αΣ̂(γΣ↔M(stepm[M]))

Finally, we exploit the commutativity of the square of
abstractions between M, M̂, Σ and Σ̂ to relate the recovered
collecting semantics with the abstract monadic semantics:

(3) αΣ̂(γΣ↔M(stepm[M])) ⊑ γΣ̂↔M̂(αM(stepm[M]))

The transitive combination of (1), (2) and (3) establishes
the soundness of the derived abstract execution system w.r.t.
the recovered collecting semantics: αΣ̂(collect) ⊑ analysis.

This theorem proves Proposition 1 in Section 6.3 after in-
stantiating the example to the Galois transformer framework.

8.6 Applying the Framework to Our Semantics
Our setting is the ground-truth semantics "gc from Sec-
tion 2 and the generic interpreter stepm from Section 5.

To recover the concrete collecting semantics, we instanti-
ate stepm to the concrete parameters for the domain and time
from Section 6.1, and synthesize the monad as a combina-
tion of state and nondeterminism Galois transformers:

M := (St[Ψ] ◦ St[Store] ◦ Pt)(ID)

To recover a path-sensitive abstract interpreter we instan-
tiate stepm to the abstract parameters for the domain and time
from Section 6.2, and synthesize the monad as a combination
of state and nondeterminism Galois transformers:

M̂ := (St[Ψ̂] ◦ St[Ŝtore] ◦ Pt)(ID)

which abstract M piecewise. Both the implementation and
correctness of the induced abstract transition system are
constructed for free by Theorems 1 and 2.

To recover a flow-sensitive abstract interpreter we synthe-
size the monad as a combination of state and flow-sensitive
Galois transformers:

M̂
fs

:= (St[Ψ̂] ◦ F t[Ŝtore])(ID)

which abstracts M̂ piecewise.
Finally, to recover a flow-insensitive abstract interpreter

we synthesize the monad as a permuted combination of state
and nondeterminism Galois transformers:

M̂
ps

:= (St[Ψ̂] ◦ Pt ◦ St[Ŝtore])(ID)

which abstracts M̂
ps piecewise.

8.7 Applying the Framework to Another Semantics
Our Galois transformers framework is semantics indepen-
dent, and the proofs in Section 8.4 need not be reproved for
another semantic setting. To use our framework and estab-
lish an end-to-end correctness theorem, the user must:

• Design a generic monadic interpreter for their semantics
using an interface of monadic effects

• Prove their interpreter monotonic w.r.t. parameters
• Prove that the induced concrete transition system recov-

ers the concrete collecting semantics of interest.

The user then enjoys the following for free:

• A combination of state, nondeterminism and flow-sensitive
Galois transformers which supports the monadic effect
interface unique to the semantics.

• The ability to rearrange monad transformers to recover
variations in path and flow sensitivities.

• An induced, executable abstract interpreter for each stack
of monad transformers.

• A proof that each induced abstract interpreter is a sound
abstraction of the collecting semantics, as a result of
Theorems 1 and 2.

13 2015/10/5

9. Implementation
We have implemented our framework in Haskell and applied
it to compute analyses for λIF. Our implementation provides
path sensitivity, flow sensitivity, and flow insensitivity as
a semantics-independent monad library. The code shares a
striking resemblance with the math.

Our implementation is suitable for prototyping and ex-
ploring the design space of static analyzers. Our analyzer
supports exponentially more compositions of analysis fea-
tures than any current analyzer. For example, our implemen-
tation is the first which can combine arbitrary choices in
call-site, object, path and flow sensitivities. Furthermore, the
user can choose different path and flow sensitivities indepen-
dently for each component of the state space.

Our implementation maam supports command-line flags
for garbage collection, mCFA, call-site sensitivity, object
sensitivity, and path and flow sensitivity.

./maam prog.lam --gc --mcfa --kcfa=1 --ocfa=2

--data-store=flow-sen --stack-store=path-sen

Each flag is implemented independently of each other ap-
plied to a single parameterized monadic interpreter. Further-
more, using Galois transformers allows us to prove each
combination correct in one fell swoop.

A developer wishing to use our library to develop ana-
lyzers for their language of choice inherits as much of the
analysis infrastructure as possible. We provide call-site, ob-
ject, path and flow sensitivities as language-independent li-
braries. To support analysis for a new language a developer
need only implement:

• A monadic semantics for their language, using state and
nondeterminism effects.

• The abstract value domain, and optionally the concrete
value domain if they wish to recover concrete execution.

• Intentional optimizations for their semantics like garbage
collection and mcfa.

The developer then receives the following for free through
our analysis library:

• A family of monads which implement their effect inter-
face and give different path and flow sensitivities.

• Mechanisms for call-site and object sensitivities.
• An execution engine for each monad to drive the analysis.

Not only is a developer able to reuse our implementation
of call-site, object, path and flow sensitivities, they need not
understand the execution machinery or soundness proofs for
them either. They need only verify that their monadic se-
mantics is monotonic w.r.t. the analysis parameters, and that
their abstract value domain forms a Galois connection. The
execution and correctness of the final analyzer is constructed
automatically given these two properties.

Our implementation is publicly available and can be in-
stalled as a cabal package: cabal install maam.

10. Related Work
Overview Program analysis comes in many forms such
as points-to [1], flow [10], or shape analysis [2], and the
literature is vast. (See Hind [9], Midtgaard [13] for surveys.)
Much of the research has focused on developing families
or frameworks of analyses that endow the abstraction with
a number of knobs, levers, and dials to tune precision and
compute efficiently (some examples include Milanova et al.
[15], Nielson and Nielson [17], Shivers [21], Van Horn and
Might [23]; there are many more). These parameters come in
various forms with overloaded meanings such as object [15,
22], context [20, 21], path [6], and heap [23] sensitivities, or
some combination thereof [11].

These various forms can all be cast in the theory of ab-
straction interpretation of Cousot and Cousot [4, 5] and
understood as computable approximations of an underly-
ing concrete interpreter. Our work demonstrates that if this
underlying concrete interpreter is written in monadic style,
monad transformers are a useful way to organize and com-
pose these various kinds of program abstractions in a modu-
lar and language-independent way.

This work is inspired by the trifecta combination of
Cousot and Cousot’s theory of abstract interpretation based
on Galois connections [3–5], Moggi’s original monad trans-
formers [16] which were later popularized in Liang et al.’s
Monad Transformers and Modular Interpreters [12], and
Sergey et al.’s Monadic Abstract Interpreters [19].

Liang et al. [12] first demonstrated how monad transform-
ers could be used to define building blocks for construct-
ing (concrete) interpreters. Their interpreter monad InterpM

bears a strong resemblance to ours. We show this “build-
ing blocks” approach to interpreter construction also extends
to abstract interpreter construction using Galois transform-
ers. Moreover, we show that these monad transformers can
be proved sound via a Galois connection to their concrete
counterparts, ensuring the soundness of any stack built from
sound blocks of Galois transformers. Soundness proofs of
various forms of analysis are notoriously brittle with respect
to language and analysis features. A reusable framework
of Galois transformers offers a potential way forward for a
modular metatheory of program analysis.

Cousot [3] develops a “calculational approach” to analy-
sis design whereby analyses are not designed and then veri-
fied post facto, but rather derived by positing an abstraction
and calculating it from the concrete interpreter using Ga-
lois connections. These calculations are done by hand. Our
approach offers the ability to automate the calculation pro-
cess for a limited set of abstractions for small-step state ma-
chines, where the abstractions are correct-by-construction
through the composition of monad transformers.

We build directly on the work of Abstracting Abstract
Machines (AAM) by Van Horn and Might [23] and Smarag-
dakis et al. [22] in our parameterization of abstract time to
achieve call-site and object sensitivity. We follow the AAM

14 2015/10/5

philosophy of instrumenting a concrete semantics first and
performing a systematic abstraction second. This greatly
simplifies the Galois connection arguments during system-
atic abstraction, at the cost of proving the correctness of the
instrumented semantics.

Monadic Abstract Interpreters Sergey et al. first intro-
duced the concept of writing abstract interpreters in monadic
style in Monadic Abstract Interpreters (MAI) [19], where
variations in analysis are also recovered through monads.

In MAI, the framework’s interface is based on denota-
tion functions for every syntactic form of the language. The
denotation functions in MAI are language-specific and spe-
cialized to their example language. MAI uses a single monad
stack fixed to the denotation function interface: state on top
of list. New analyses are achieved through multiple deno-
tation functions into this single monad. Analyses in MAI
are all fixed to be path-sensitive, and the methodology for
incorporating other path or flow properties is to surgically
instrument the execution of the analysis with a custom Ga-
lois connection. Lastly, the framework provides no reasoning
principles or proofs of soundness for the resulting analysis.
A user of MAI must inline the definitions of each analysis
and prove each implementation correct from scratch.

Our framework is based on state and nondeterminism
monadic effects. This interface comes equipped with laws,
allowing one to verify the correctness of a monadic inter-
preter independent of a particular monad. State and non-
determinism monadic effects capture arbitrary small-step
relational semantics, and are language independent. Be-
cause we place the monadic interpreter behind an interface
of effects with laws, we are able to introduce language-
independent monads which capture flow-sensitivity and
flow-insensitivity, and we show how to compose these fea-
tures with other analysis design choices. The monadic ef-
fect interface also allows us to separate the monad from the
abstract domain. Finally, our framework is compositional
through the use of monad transformers, and constructs exe-
cution engines and end-to-end soundness proofs for free.

Widening for Control-Flow Hardekopf et al. also intro-
duce a unifying account of control flow properties in Widen-
ing for Control-Flow (WCF) [8], accounting for path, flow
and call-site sensitivities . WCF achieves this through an in-
strumentation of the abstract machine’s state space which
is allowed to track arbitrary contextual information, up to
the path-history of the entire execution. WCF also develops
a modular proof framework, proving the bulk of soundness
proofs for each instantiation of the instrumentation at once.

Our work achieves similar goals, although isolating path
and flow sensitivity is not our primary objective. While WCF
is based on a language-dependent instrumentation of the
semantics, we achieve variations in path and flow sensitivity
by modifying control properties of the interpreter through
language-independent monads.

Particular strengths of WCF are the wide range of choices
for control-flow sensitivity which are shown to be imple-
mentable within the design, and the modular proof frame-
work. For example, WCF is able to also account for call-site
sensitivity through their design; we must account for call-
site sensitivity through a different mechanism.

Particular strengths of our work is the understanding of
path and flow sensitivity not through instrumentation but
through semantics-independent control properties of the in-
terpreter, and also a modular proof framework, although
modular in a different sense from WCF. We also show how to
compose different path and flow sensitivity choices for inde-
pendent components of the state space, like a flow-sensitive
data-store and path-sensitive stack-store, for example.

11. Conclusion
We have shown that Galois transformers, monad trans-
formers that transport Galois connections and mappings
to an executable transition system, are effective, language-
independent building blocks for constructing program ana-
lyzers, and form the basis of a modular, reusable and com-
posable metatheory for program analysis.

In the end, we hope language independent characteriza-
tions of analysis ingredients will both facilitate the system-
atic construction of program analyses and bridge the gap be-
tween various communities which often work in isolation.

Acknowledgments
This material is partially based on research sponsored by
DARPA under agreements number AFRL FA8750-15-2-
0092 and FA8750-12-2-0106 and by NSF under CAREER
grant 1350344. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

References
[1] L. O. Andersen. Program Analysis and Specialization for the

C Programming Language. PhD thesis, DIKU, University of
Copenhagen, 1994.

[2] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of
pointers and structures. PLDI ’90. ACM, 1990.

[3] P. Cousot. The calculational design of a generic abstract
interpreter. In Calculational System Design. NATO ASI Series
F. IOS Press, Amsterdam, 1999.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. POPL ’77. ACM, 1977.

[5] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. POPL ’79. ACM, 1979.

[6] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive pro-
gram verification in polynomial time. PLDI ’02. ACM, 2002.

[7] J. Gibbons and R. Hinze. Just do it: Simple monadic equa-
tional reasoning. ICFP ’11. ACM, 2011.

15 2015/10/5

[8] B. Hardekopf, B. Wiedermann, B. Churchill, and V. Kashyap.
Widening for Control-Flow. VMCAI ’14. Springer Berlin
Heidelberg, 2014.

[9] M. Hind. Pointer analysis: haven’t we solved this problem
yet? PASTE ’01. ACM, 2001.

[10] N. D. Jones. Flow analysis of lambda expressions (prelimi-
nary version). ICALP ’81. Springer-Verlag, 1981.

[11] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity
for points-to analysis. PLDI ’13. ACM, 2013.

[12] S. Liang, P. Hudak, and M. Jones. Monad transformers and
modular interpreters. POPL ’95. ACM, 1995.

[13] J. Midtgaard. Control-flow analysis of functional programs.
ACM Comput. Surv., 2012.

[14] M. Might and O. Shivers. Improving flow analyses via ΓCFA:
Abstract garbage collection and counting. ICFP ’06, 2006.

[15] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to analysis for Java. ACM Trans.
Softw. Eng. Methodol., 2005.

[16] E. Moggi. An abstract view of programming languages. Tech-
nical report, Edinburgh University, 1989.

[17] F. Nielson and H. R. Nielson. Infinitary control flow analysis:
a collecting semantics for closure analysis. POPL ’97. ACM,
1997.

[18] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
Program Analysis. Springer-Verlag, 1999.

[19] I. Sergey, D. Devriese, M. Might, J. Midtgaard, D. Darais,
D. Clarke, and F. Piessens. Monadic abstract interpreters.
PLDI ’13. ACM, 2013.

[20] M. Sharir and A. Pnueli. Two Approaches to Interprocedural
Data Flow Analysis, chapter 7. Prentice-Hall, Inc., 1981.

[21] O. Shivers. Control-flow analysis of higher-order languages.
PhD thesis, Carnegie Mellon University, 1991.

[22] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your
contexts well: Understanding object-sensitivity. POPL ’11.
ACM, 2011.

[23] D. Van Horn and M. Might. Abstracting abstract machines.
ICFP ’10. ACM, 2010.

A. Proofs
A.1 Lemma 3 [Galois Transformers] (Section 8.4)
State St[s] is a Galois transformer. Recall the definition
of St[s] and ΠSt

[s]:

St[s](m)(A) := s→ m(A× s)

ΠSt
[s](Σ)(A) := Σ(A× s)→ Σ(A× s)

State Property (1): The action St[s] on functions:

St[s] : (A→ m(B))→ A→ St[s](m)(B)

St[s](f)(x)(s) := y ←m f(x) ; returnm(y, s)

To transport Galois connections, we assume a Galois con-
nection A→ m1(B) −−−−→←−−−−

αm

γm

A→ m2(B) and define α and γ:

α : (A→ St[s](m1)(B))→ A→ St[s](m2)(B)

α(f)(x)(s) := αm(λ(x, s).f(x)(s))(x, s)

γ : (A→ St[s](m2)(B))→ A→ St[s](m1)(B)

γ(f)(x)(s) := γm(λ(x, s).f(x)(s))(x, s)

α and γ are monotonic by inspection, and extensive and
reductive:

extensive : ∀fxs, f(x)(s) ⊑ γ(α(f))(x)(s)

γ(α(f))(x)(s)

= γm(λ(x, s).αm(λ(x, s).f(x)(s))(x, s))(x, s)

definition of α and γ $
= γm(αm(λ(x, s).f(x)(s)))(x, s) # η -reduction $
⊒ (λ(x, s).f(x)(s))(x, s) # γm ◦ αm extensive $
= f(x)(s) # β -reduction $ #
reductive : ∀fxs,α(γ(f))(x)(s) ⊑ f(x)(s)

α(γ(f))(x)(s)

= αm(λ(x, s).γm(λ(x, s).f(x)(s))(x, s))(x, s)

definition of α and γ $
= αm(γm(λ(x, s).f(x)(s))(x, s))(x, s) # η -reduction $
⊑ (λ(x, s).f(x)(s))(x, s) # αm ◦ γm reductive $
= f(x)(s) # β -reduction $ #

Finally, Property (1) commutes, assuming that the Galois
connection A→ m1(B) −−−−→←−−−−

αm

γm

A→ m2(B) is homomorphic:

goal : St[s][m2](α
m(f))(x)(s) = α(St[s][m1](f))(x)(s)

α(St[s][m1](f))(x)(s)

= αm(λ(x, s).y ←m1 f(x) ; returnm1 (y, s))(s, x)

definition of α and St[s][m1] $
= (λ(x, s).y ←m1 αm(f)(x) ; returnm2 (y, s))(s, x)

αm homomorphic on bindm1 and returnm1 $
= y ←m2 αm(f)(x) ; returnm2 (y, s) # β -reduction $
= St[s][m2](α

m(f))(s)(x) # definition of St[s] $ #

State Property (2): The action ΠSt
[s] on functions uses the

mapping to monadic functions defined in Property (3):

ΠSt
[s] : (Σ(A)→ Σ(B))→ ΠSt

[s](Σ)(A)→ ΠSt
[s](Σ)(B)

ΠSt
[s](f)(ς) := γΣ↔m(St[s](αΣ↔m(f)))(ς)

To transport Galois connections, we assume a Galois con-
nection Σ1(A) → Σ1(B) −−−−→←−−−−

αΣ

γΣ

Σ2(A) → Σ2(B) and define α

16 2015/10/5

and γ as instantiations of αΣ and γΣ:

α : (ΠSt
[s](Σ1)(A)→ ΠSt

[s](Σ1)(B))

→ ΠSt
[s](Σ2)(A)→ ΠSt

[s](Σ2)(B)

γ : (ΠSt
[s](Σ2)(A)→ ΠSt

[s](Σ2)(B))

→ ΠSt
[s](Σ1)(A)→ ΠSt

[s](Σ1)(B)

γ(f)(ς) := γΣ(f)(ς) α(f)(ς) := αΣ(f)(ς)

Monotonicity, reductive and extensive properties carry over
by definition. Finally, Property (2) commutes, assuming that
αΣ and αm commute with both γΣ↔m and αΣ↔m:

goal : ΠSt
[s][Σ2](α

Σ(f))(ς) = αΣ(ΠSt
[s][Σ1](f))(ς)

αΣ(ΠSt
[s][Σ1](f)(ς)

= αΣ(γΣ↔m(St[s](αΣ↔m(f))))(ς) # definition of ΠSt
[s][Σ1] $

= αΣ(γΣ↔m(λ(x)(s).y ←m1 αΣ↔m(f)(x) ;

returnm1 (y, s)))(ς) # definition of St[s] $
= γΣ↔m(αm(λ(x)(s).y ←m1 αΣ↔m(f)(x) ;

returnm1 (y, s)))(ς) # αΣ and γΣ↔m commute $
= γΣ↔m(λ(x)(s).y ←m2 αm(αΣ↔m(f))(x) ;

returnm2 (y, s))(ς) # αm homomorphic $
= γΣ↔m(λ(x)(s).y ←m2 αΣ↔m(αΣ(f))(x) ;

returnm2 (y, s))(ς) # αm and αΣ↔m commute $
= γΣ↔m(St[s](αΣ↔m(αΣ(f))))(ς) # definition of St[s] $

= ΠSt
[s][Σ2](α

Σ(f))(ς) # definition of ΠSt
[s][Σ2] $ #

State Property (3): Assume a Galois connection Σ(A) →
Σ(B) −−−−−−→←−−−−−−

αΣ↔m

γΣ↔m

A → m(B). The Galois connection between
St[s](m) and ΠSt

[s](Σ) is defined:

α : (ΠSt
[s](Σ)(A)→ ΠSt

[s](Σ)(B))→ A→ St[s](m)(B)

α(f)(x)(s) := αΣ↔m(f)(x, s)

γ : (A→ St[s](m)(B))→ ΠSt
[s](Σ)(A)→ ΠSt

[s](Σ)(B)

γ(f)(ς) := γΣ↔m(λ(x, s)→ f(x)(s))(ς)

α and γ are monotonic by inspection, and extensive and
reductive:

extensive : ∀fς, f(ς) ⊑ γ(α(f))(ς)

γ(α(f))(ς)

= γΣ↔m(λ(x, s)→ αΣ↔m(f)(x, s))(ς) # definition of α and γ $
= γΣ↔m(αΣ↔m(f))(ς) # η -reduction $
⊒ f(ς) # γΣ↔m ◦ αΣ↔m extensive $ #
reductive : ∀fxs,α(γ(f))(x)(s) ⊑ f(x)(s)

α(γ(f))(x)(s)

= αΣ↔m(γΣ↔m(λ(x, s)→ f(x)(s)))(x, s)

definition of α and γ $
⊑ (λ(x, s)→ f(x)(s))(x, s) # αΣ↔m ◦ γΣ↔m reductive $
= f(x)(s) # β -reduction $ #

Finally, Property (3) commutes:

goal : ΠSt
[s][Σ](γΣ↔m(f))(ς) ⊑ γ(St[s](f))(ς)

ΠSt
[s][Σ](γΣ↔m(f))(ς)

= γΣ↔m(λ(x, s)→ St[s](αΣ↔m(γΣ↔m(f)))(x)(s))(ς)

definition of ΠSt
[s][Σ] $

⊑ γΣ↔m(λ(x, s)→ St[s](f)(x)(s))(ς)

αΣ↔m ◦ γΣ↔m reductive $
= γ(St[s](f))(ς) # definition of γ $ #

Nondeterminism Pt is a Galois transformer. Recall the
definition of Pt and ΠPt :

Pt(m)(A) := m(P(A)) ΠPt
(Σ)(A) := Σ(P(A))

Nondeterminism Property (1): The action Pt on functions:

Pt : (A→ m(B))→ A→ Pt(m)(B)

Pt(f)(x) := y ←m f(x) ; returnm({y})

To transport Galois connections, we assume a Galois con-
nection A→ m1(B) −−−−→←−−−−

αm

γm

A→ m2(B) define α and γ:

α : (A→ P(m1)(B))→ A→ P(m2)(B)

α(f)(x) = αm(λ({x1..xn}).f(x1) /m1 .. /m1 f(xn))({x})

γ : (A→ P(m2)(B))→ A→ P(m1)(B)

γ(f)(x) = γm(λ({x1..xn}).f(x1) /m2 .. /m2 f(xn))({x})

α and γ are monotonic by inspection, and extensive and
reductive:

extensive : ∀fx, f(x) ⊑ γ(α(f))(x)

γ(α(f))(x)

= γm(λ({x1..xn}).

αm(λ({x1..xn}).f(x1) /m1 .. /m1 f(xn))({x1})

/m2 ../m2

αm(λ({x1..xn}).f(x1) /m1 .. /m1 f(xn))({xn}))({x})

definition of α and γ $
= γm(λ({x1..xn}).

({x1..xn}←m2 returnm2 ({x1}) ; αm(λ({x1..xn}).

f(x1) /m1 .. /m1 f(xn))({x1..xn}))

/m2 ../m2

({x1..xn}←m2 returnm2 ({xn}) ; αm(λ({x1..xn}).

f(x1) /m1 .. /m1 f(xn))({x1..xn})))({x})

left-unit of m2 $
⊒ γm(λ({x1..xn}).

({x1..xn}←m2 αm(γm(returnm2 ({x1}))) ;

αm(λ({x1..xn}).f(x1) /m1 .. /m1 f(xn))({x1..xn}))

/m2 ../m2

({x1..xn}←m2 αm(γm(returnm2 ({xn}))) ;

αm(λ({x1..xn}).f(x1) /m1 .. /m1 f(xn))({x1..xn})))

({x}) # αm ◦ γm reductive $

17 2015/10/5

= γm(λ({x1..xn}).

(αm({x1..xn}←m1 returnm1 ({x1}) ;

f(x1) /m1 .. /m1 f(xn))) /m2 ../m2

(αm({x1..xn}←m1 returnm1 ({xn}) ;

f(x1) /m1 .. /m1 f(xn))))({x})

αm and γm homomorphic on bindm2 and returnm2 $
= γm(αm(λ({x1..xn}).{x1..xn}← returnm1 ({x1..xn}) ;

f(x1) /m1 .. /m1 f(xn)))({x})

join-semilattice functorality of m $
⊒ {x1..xn}← returnm1 ({x}) ; f(x1) /m1 .. /m1 f(xn)

γm ◦ αm extensive $
= f(x) # left-unit of m $ #
reductive : ∀fx,α(γ(f))(x) ⊑ f(x)

α(γ(f))(x)

= αm(λ({x1..xn}).

γm(λ({x1..xn}).f(x1) /m2 .. /m2 f(xn))({x1})

/m1 ../m1

γm(λ({x1..xn}).f(x1) /m2 .. /m2 f(xn))({xn}))({x})

definition of α and γ $
= αm(λ({x1..xn}).

({x1..xn}←m1 returnm1 ({x1}) ; γm(λ({x1..xn}).

f(x1) /m2 .. /m2 f(xn))({x1..xn}))

/m1 ../m1

({x1..xn}←m1 returnm1 ({x2}) ; γm(λ({x1..xn}).

f(x1) /m2 .. /m2 f(xn))({x1..xn})))({x})

left-unit of m1 $
⊑ αm(λ({x1..xn}).

({x1..xn}←m1 γm(αm(returnm1 ({x1}))) ;

γm(λ({x1..xn}).f(x1) /m2 .. /m2 f(xn))({x1..xn}))

/m1 ../m1

({x1..xn}←m1 γm(αm(returnm1 ({xn}))) ;

γm(λ({x1..xn}).f(x1) /m2 .. /m2 f(xn))({x1..xn})))

({x}) # γm ◦ αm extensive $
= αm(λ({x1..xn}).

γm({x1..xn}←m2 returnm2 ({x1}) ; f(x1) /m2 .. /m2 f(xn))

/m1 ../m1

γm({x1..xn}←m2 returnm2 ({x1}) ; f(x1) /m2 .. /m2 f(xn)))

({x}) # αmandγm homomorphic on bindm1 and returnm1 $
= αm(γm(λ{x1..xn}).{x1..xn}←m2 returnm2 ({x1..xn}) ;

f(x1) /m2 .. /m2 f(xn))({x})

join-semilattice functorailty of m $
⊑ {x1..xn}←m2 returnm2 ({x}) ; f(x1) /m2 .. /m2 f(xn)

αm ◦ γm reductive $
= f(x) # left-unit of m $ #

Finally, Property (1) commutes, assuming that the Galois
connection A→ m1(B) −−−−→←−−−−

αm

γm

A→ m2(B) is homomorphic:

goal : ∀fs,Pt[m2](α
m(f))(x) = α(Pt[m1](f))(x)

α(Pt[m1](f))(x)

= αm(λ({x1..xn}).

(y ←m1 f(x1) ; returnm1 ({y})) /m1 ../m1

(y ←m1 f(xn) ; returnm1 ({y})))({x})

definition of α and Pt[m1](f) $
= y ←m2 αm(f)(x) ; returnm2 ({y})

homomorphic on bindm1 and returnm1 $
= Pt[m2](α

m(f))(x) # definition of Pt[m2] $ #

Nondeterminism Property (2): The action ΠPt on func-
tions uses the mapping to monadic functions defined in Prop-
erty (3):

ΠPt
: (Σ(A)→ Σ(B))→ ΠPt

(Σ)(A)→ ΠPt
(Σ)(B)

ΠPt
(f)(ς) := γΣ↔γ(Pt(αΣ↔γ(f)))

To transport Galois connections, we assume a Galois con-
nection Σ1(A) → Σ1(B) −−−−→←−−−−

αΣ

γΣ

Σ2(A) → Σ2(B) and define α
and γ as instantiations of αΣ and γΣ:

α : (ΠPt
(Σ1)(A)→ ΠPt

(Σ1)(B))→ ΠPt
(Σ2)(A)→ ΠPt

(Σ2)(B)

γ : (ΠPt
(Σ2)(A)→ ΠPt

(Σ2)(B))→ ΠPt
(Σ1)(A)→ ΠPt

(Σ1)(B)

α(f)(ς) := αΣ(f)(ς) γ(f)(ς) := γΣ(f)(ς)

Monotonicity, reductive and extensive properties carry over
by definition. Finally, Property (2) commutes, assuming that
αΣ and αm commute with both γΣ↔m and αΣ↔m:

goal : ΠPt
[Σ2](α

Σ(f))(ς) = αΣ(ΠPt
[Σ1](f))(ς)

αΣ(ΠPt
[Σ1](f))(ς)

= αΣ(γΣ↔γ(Pt(αΣ↔γ(f))))(ς) # definition of ΠPt $
= αΣ(γΣ↔γ(λ(x).y ←m1 αΣ↔γ(f)(x) ; returnm1 ({y})))(ς)

definition of Pt $
= γΣ↔γ(αm(λ(x).y ←m1 αΣ↔γ(f)(x) ; returnm1 ({y})))(ς)

αΣ and γΣ↔γ commute $
= γΣ↔γ(λ(x).y ←m2 αm(αΣ↔γ(f))(x) ; returnm2 ({y}))(ς)

αm homomorphic on bindm1 and returnm2 $
= γΣ↔γ(λ(x).y ←m2 αΣ↔γ(αΣ(f))(x) ; returnm2 ({y}))(ς)

αm and αΣ↔γ commute $

= ΠPt
[Σ2](α

Σ(f))(ς) # definition of ΠPt
[Σ2] and αΣ $ #

Nondeterminism Property (3): Assume a Galois connec-
tion Σ(A) → Σ(B) −−−−−−→←−−−−−−

αΣ↔m

γΣ↔m

A → m(B). The Galois connec-
tion between Pt(m) and ΠPt

(Σ) is:

α : (ΠPt
(Σ)(A)→ ΠPt

(Σ)(B))→ A→ Pt(m)(B)

α(f)(x) := αΣ↔m(f)({x})

18 2015/10/5

γ : (A→ Pt(m)(B))→ ΠPt
(Σ)(A)→ ΠPt

(Σ)(B)

γ(f)(ς) := γΣ↔m(λ({x1..xn}).f(x1) /m .. /m f(xn))(ς)

α and γ are monotonic by inspection, and extensive and
reductive:

extensive : ∀fς, f(ς) ⊑ γ(α(f))(ς)

γ(α(f))(ς)

= γΣ↔m(λ({x1..xn}).

αΣ↔m(f)({x1}) /m .. /m αΣ↔m(f)({xn}))(ς)

definition of α and γ $
= γΣ↔m(λ({x1..xn}).αΣ↔m(f)({x1..xn}))(ς)

join-semilattice functorality of m $
⊒ f(ς) # γΣ↔m ◦ αΣ↔m extensive and η -reduction $ #
reductive : ∀fx,α(γ(f))(x) ⊑ f(x)

α(γ(f))(x)

= αΣ↔m(γΣ↔m(λ({x1..xn}).f(x1) /m .. /m f(xn)))({x})

definition of α and γ $
⊑ (λ({x1..xn}).f(x1) /m .. /m f(xn))({x})

αΣ↔m ◦ γΣ↔m reductive $
= f(x) # β -reduction $ #

Finally, Property (3) commutes:

goal : ΠPt
(γΣ↔m(f))(ς) ⊑ γ(Pt(f))(ς)

ΠPt
(γΣ↔m(f))(ς)

= γΣ↔m(Pt(αΣ↔m(γΣ↔m(f))))(ς) # definition of ΠPt $
⊑ γΣ↔m(Pt(f))(ς) # αΣ↔m ◦ γΣ↔m reductive $
= γ(Pt(f))(ς) # definition of γ $ #

Flow Sensitivity F t[s] is a Galois transformer. Recall
the definition of F t[s] and ΠF t

[s]:

F t[s](m)(A) := s→ m([A)→ s]) ΠF t
[s](Σ)(A) := Σ([A)→ s])

Flow Sensitivity Property (1): The action F t[s] on func-
tions:

F t[s] : (A→ m(B))→ A→ F t[s](m)(B)

F t[s](f)(x)(s) := y ←m f(x) ; returnm({y)→ s})

To transport Galois connections we assume a Galois connec-
tion A→ m1(B) −−−−→←−−−−

αm

γm

A→ m2(B) and define α and γ:

α : (A→ F t[s](m1)(B))→ A→ F t[s](m2)(B)

α(f)(x)(s) := αm(λ({x1)→ s1..xn)→ sn}).

f(x1)(s1) /m .. /m f(xn)(sn))({x)→ s})

γ : (A→ Ft[s](m2)(B))→ A→ F t[s](m1)(B)

γ(f)(x)(s) := γm(λ({x1)→ s1..xn)→ sn}).

f(x1)(s1) /m .. /m f(xn)(sn))({x)→ s})

α and γ are monotonic by inspection. α and γ are extensive
and reductive:

extensive : ∀fxs, f(x)(s) ⊑ γ(α(f))(x)(s)

γ(α(f))(x)(s)

= γm(λ({x1)→ s1..xn)→ sn}).

αm(λ({x1)→ s1..xn)→ sn}).

f(x1)(s1) /m1 .. /m1 f(xn)(sn))({x1)→ s1})

/m2 ../m2

αm(λ({x1)→ s1..xn)→ sn}).

f(x1)(s1) /m1 .. /m1 f(xn)(sn))({xn)→ sn}))

({x)→ s}) # definition of α and γ $
⊒ γm(λ({x1)→ s1..xn)→ sn}).

({x1)→ s1..xn)→ sn}←m2

αm(γm(returnm2 ({x1)→ s1}))) ;

αm(f(x1)(s1) /m1 .. /m1 f(xn)(sn)))

/m2 ../m2

({x1)→ s1..xn)→ sn}←m2

αm(γm(returnm2 ({xn)→ sn}))) ;

αm(f(x1)(s1) /m1 .. /m1 f(xn)(sn))))({x)→ s})

left-unit of m and αm ◦ γm reductive $
= γm(αm(λ({x1)→ s1..xn)→ sn}).

{x1)→ s1..xn)→ sn}←m1

returnm1 ({x1)→ s1..xn)→ sn}) ;

f(x1)(s1) /m1 .. /m1 f(xn)(sn)))({x)→ s})

αm and γm homomorphic and join functorality $
⊒ f(x)(s) # γm ◦ αm extensive and left-unit of m $ #
reductive : ∀fxs,α(γ(f))(x)(s) ⊑ f(x)(s)

α(γ(f))(x)(s)

= αm(λ({x1)→ s1..xn)→ sn}).

γm(λ({x1)→ s1..xn)→ sn}).

f(x1)(s1) /m2 .. /m2 f(xn)(sn))({x1)→ s1})

/m1 ../m1

γm(λ({x1)→ s1..xn)→ sn}).

f(x1)(s1) /m2 .. /m2 f(xn)(sn))({xn)→ sn}))

({x)→ s}) # definition of α and γ $
⊑ αm(λ({x1)→ s1..xn)→ sn}).

({x1)→ s1..xn)→ sn}←m1 γm(αm(returnm1 ({x1)→ s1}))) ;

γm(f(x1)(s1) /m2 .. /m2 f(xn)(sn)))

/m1 ../m1

({x1)→ s1..xn)→ sn}←m1 γm(αm(returnm1 ({xn)→ sn}))) ;

γm(f(x1)(s1) /m2 .. /m2 f(xn)(sn))))({x)→ s})

left-unit of m and γm ◦ αm extensive $

19 2015/10/5

= αm(γm(λ({x1)→ s1..xn)→ sn}).

{x1)→ s1..xn)→ sn}←m2 returnm2 ({x1)→ s1..xn)→ sn}) ;

f(x1)(s1) /m2 .. /m2 f(xn)(sn)))({x)→ s})

αm and γm homomorphic and join functorality $
⊑ f(x)(s) # αm ◦ γm extensive and left-unit of m $ #

Finally, Property (1) commutes, assuming that A→ m1(B) −−−−→←−−−−
αm

γm

A→ m2(B) is homomorphic:

goal : ∀fs, F t[s][m2](α
m(f))(x)(s) = α(F t[s][m1](f))(x)(s)

α(F t[s][m1](f))(x)(s)

= αm(λ({x1)→ s1..xn)→ sn}).

(y ←m1 f(x) ; returnm1 (y1)(s1)) /m1 ../m1

(y ←m1 f(x) ; returnm1 (yn)(sn)))({x)→ s})

definition of α and F t[s][m1] $
= y ←m2 αm(f)(x) ; returnm2 (y)(s)

homomorphic on bindm1 and returnm1 $
= F t[s][m2](α

m(f))(x) # definition of F t[s][m2] $ #

Flow Sensitivity Property (2): The action ΠF t[s] on func-
tions uses the mapping to monadic functions defined in Prop-
erty (3):

ΠF t
[s] : (Σ(A)→ Σ(B))→ ΠF t

[s](Σ)(A)→ ΠF t
[s](Σ)(B)

ΠF t
[s](f)(ς) := γΣ↔γ(F t[s](αΣ↔γ(f)))

To transport Galois connections, we assume a Galois con-
nection Σ1(A) → Σ1(B) −−−−→←−−−−

αΣ

γΣ

Σ2(A) → Σ2(B) and define α
and γ as instantiations of αΣ and γΣ:

α : (ΠF t
[s](Σ1)(A)→ ΠF t

[s](Σ1)(B))

→ ΠF t
[s](Σ2)(A)→ ΠF t

[s](Σ2)(B)

γ : (ΠF t
[s](Σ2)(A)→ ΠF t

[s](Σ2)(B))

→ ΠF t
[s](Σ1)(A)→ ΠF t

[s](Σ1)(B)

α(f)(ς) = αΣ(f)(ς) γ(f)(ς) = γΣ(f)(ς)

Monotonicity, reductive and extensive properties carry over
by definition. Finally, Property (2) commutes, assuming that
αΣ and αm commute with both γΣ↔m and αΣ↔m:

goal : ΠF t
[s][Σ2](α

Σ(f))(ς) = αΣ(ΠF t
[s][Σ1](f))(ς)

αΣ(ΠF t
[s][Σ1](f))(ς)

= αΣ(γΣ↔γ(F t[s](αΣ↔γ(f))))(ς) # definition of ΠF t
[s] $

= αΣ(γΣ↔γ(λ(x)(s).y ←m1 αΣ↔γ(f)(x) ;

returnm1 ({y)→ s})))(ς) # definition of F t[s] $
= γΣ↔γ(αm(λ(x)(s).y ←m1 αΣ↔γ(f)(x) ;

returnm1 ({y)→ s})))(ς) # αΣ and γΣ↔γ commute $

= γΣ↔γ(λ(x)(s).y ←m2 αm(αΣ↔γ(f))(x) ;

returnm2 ({y)→ s}))(ς) # αm homomorphic $
= γΣ↔γ(λ(x)(s).y ←m2 αΣ↔γ(αΣ(f))(x) ;

returnm2 ({y)→ s}))(ς) # αm and αΣ↔γ commute $

= ΠPt
[Σ2](α

Σ(f))(ς) # definition of ΠPt
[Σ2] and αΣ $ #

Flow Sensitivity Property (3): Assume a Galois connec-
tion:

Σ(A)→ Σ(B) −−−−−−→←−−−−−−
αΣ↔m

γΣ↔m

A→ m(B)

The Galois connection between F t[s](m) and ΠF t
[s](Σ) is:

α : (ΠF t
[s](Σ)(A)→ ΠF t

[s](Σ)(B))→ A→ F t[s](m)(B)

α(f)(x)(s) := αΣ↔m(f)({x)→ s})

γ : (A→ F t[s](m)(B))→ ΠF t
[s](Σ)(A)→ ΠF t

[s](Σ)(B)

γ(f)(ς) := γΣ↔m(λ({x1)→ s1..xn)→ sn}).

f(x1)(s1) /m .. /m f(xn)(sn))(ς)

α and γ are monotonic by inspection. α and γ are extensive
and reductive:

extensive : ∀fς, f(ς) ⊑ γ(α(f))(ς)

γ(α(f))(ς)

= γΣ↔m(λ({x1)→ s1..xn)→ sn}).

αΣ↔m(f)({x1)→ s1}) /m .. /m αΣ↔m(f)({xn)→ sn}))(ς)

definition of α and γ $
= γΣ↔m(αΣ↔m(f))(ς) # join-semilattice functorality of m $
⊒ f(ς) # γΣ↔m ◦ αΣ↔m extensive $ #
reductive : ∀fx,α(γ(f))(x)(s) ⊑ f(x)(s)

α(γ(f))(x)(s)

= αΣ↔m(γΣ↔m(λ({x1)→ s1..xn)→ sn}).

f(x1)(s1) /m .. /m f(xn)(sn)))({x)→ s})

definition of α and γ $
⊑ (λ({x1)→ s1..xn)→ sn}).

f(x1)(s1) /m .. /m f(xn)(sn))({x)→ s})

αΣ↔m ◦ γΣ↔m reductive $
= f(x)(s) # β -reduction $ #

Finally, Property (3) commutes:

goal : ΠF t
[s](γΣ↔m(f))(ς) ⊑ γ(F t[s](f))(ς)

ΠF t
[s](γΣ↔m(f))(ς)

= γΣ↔m(F t[s](αΣ↔m(γΣ↔m(f))))(ς) # definition of ΠF t
[s] $

⊑ γΣ↔m(F t[s](f))(ς) # αΣ↔m ◦ γΣ↔m reductive $
= γ(F t[s](f))(ς) # definition of γ $ #

20 2015/10/5

	Introduction
	Semantics
	Path and Flow Sensitivity in Analysis
	Analysis Parameters
	The Analysis Monad
	The Abstract Domain
	Abstract Time

	The Interpreter
	Recovering Analyses
	Recovering a Concrete Interpreter
	Recovering an Abstract Interpreter
	End-to-End Correctness

	Varying Path and Flow Sensitivity
	Flow Insensitive Monad

	A Compositional Monadic Framework
	State Galois Transformer
	Nondeterminism Galois Transformer
	Flow Sensitivity Galois Transformer
	Galois Transformers
	End-to-End Correctness with Galois Transformers
	Applying the Framework to Our Semantics
	Applying the Framework to Another Semantics

	Implementation
	Related Work
	Conclusion
	Proofs
	 Lemma 3 [Galois Transformers] (Section 8.4)

