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An oblivious computation is one that is free of direct and indirect information leaks, e.g., due to observable
differences in timing and memory access patterns. This paper presents λobliv, a core language whose type
system enforces obliviousness. Prior work on type-enforced oblivious computation has focused on deterministic
programs. λobliv is new in its consideration of programs that implement probabilistic algorithms, such as
those involved in cryptography. λobliv employs a substructural type system and a novel notion of probability
region to ensure that information is not leaked via the observed distribution of visible events. Probability
regions support reasoning about probabilistic correlation and independence between values, and our use of
probability regions is motivated by a source of unsoundness that we discovered in the type system of ObliVM,
a language for implementing state of the art oblivious algorithms. We prove that λobliv’s type system enforces
obliviousness and show that it is expressive enough to typecheck advanced tree-based oblivious RAMs.
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1 INTRODUCTION

Cloud computing allows clients to conveniently outsource computation, but they must trust that
cloud providers do not exploit or mishandle sensitive information. To remove the provider from
the trusted computing base, work in both industry and research has strived to produce a secure
abstract machine comprising an execution engine and protected memory: The adversary cannot
see sensitive data as it is being operated on, nor can it observe such data at rest in memory. Such
an abstract machine can be realized by encrypting the data in memory and then performing
computations using cryptographic mechanisms (e.g., secure multi-party computation [Yao 1986])
or secure processors [Hoekstra 2015; Suh et al. 2003; Thekkath et al. 2000].

Unfortunately, a secure abstract machine does not defend against an adversary that can observe
memory access patterns [Islam et al. 2012; Maas et al. 2013; Zhuang et al. 2004] and instruction
timing [Brumley and Boneh 2003; Kocher 1996] (as made famous by recent Spectre and Meltdown
attacks [Kocher et al. 2019; Lipp et al. 2018; Van Bulck et al. 2018]), among other łsidež channels
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of information. For cloud computing, such an adversary is the cloud provider itself, which has
physical access to its machines, and so can observe traffic on the memory bus.

A countermeasure against an unscrupulous provider is to store code and data in oblivious RAM

(ORAM) [Maas et al. 2013; Suh et al. 2003]. First proposed by Goldreich [1987] and Goldreich and
Ostrovsky [1996], ORAM obfuscates the mapping between addresses and data, in effect łencryptingž
the addresses along with the data. Replacing RAM with ORAM solves (much of) the security
problem but incurs a substantial slowdown in practical situations [Liu et al. 2015a, 2013; Maas et al.
2013] as reads/writes add overhead that is polylogarithmic in the size of the memory.
Recent work has explored methods for reducing the cost of programming with ORAM. Liu

et al. [2015a, 2013, 2014] developed a family of type systems to check when partial use of ORAM
(alongside normal, encrypted RAM) results in no loss of security; i.e., only when the addresses of
secret data could indirectly reveal sensitive information must the data be stored in ORAM. This
optimization can provide order-of-magnitude asymptotic performance improvements. Wang et al.
[2014] explored how to build oblivious data structures (ODSs), such as queues or stacks, that are
more efficient than their standard counterparts implemented on top of ORAM. In followup work,
Liu et al. [2015b]; oblivm-www [2019] devised ObliVM, a programming language for implementing
such oblivious data structures, including ORAMs themselves. A key feature of ObliVM is careful
treatment of random numbers, which are at the heart of state-of-the-art ORAM and ODS algorithms.
While the goal of ObliVM is that well-typed programs are secure, no formal argument to this effect
is made.

In this paper, we present λobliv, a core language for oblivious computation, inspired by ObliVM.
λobliv extends a standard language with primitives for generating and using uniformly distributed
random numbers.We prove that λobliv’s type system guarantees probabilistic memory trace oblivious-

ness (PMTO), i.e., that the possible distribution of adversary-visible execution traces is independent
of the values of secret variables. This property generalizes the deterministic MTO property enforced
by Liu et al. [2015a, 2013], which did not consider the use of randomness. In carrying out this work,
we discovered that the ObliVM type system is unsound, so an important contribution of λobliv is a
design which achieves soundness without overly restricting or complicating the language.
λobliv’s type system aims to ensure that no probabilistic correlation forms between secrets and

publicly revealed random choices. In oblivious algorithms it is often the case that a security-sensitive
random choice is made (e.g., where to store a particular block in an ORAM), and eventually that
choice is made visible to the adversary (e.g., when a block is accessed by the client). This transition
from a hidden choice to a public oneÐwhich we call a revelationÐis not problematic so long as the
revealed value does not communicate information about a secret. λobliv ensures that revelations do
not communicate information by guaranteeing that all revealed values are uniformly distributed.
λobliv’s type system, presented in Section 3, ensures that revelations are uniformly distributed

by treating randomly generated numbers as affine, meaning they cannot be freely copied. Affinity
prevents revealing the same number twice, which is problematic because a second revelation is not
uniformly distributed when conditioned on observing the first. Unfortunately, strict affinity is too
strong for implementing oblivious algorithms, which require the ability to make copies of random
numbers which are later revealed. λobliv’s type system addresses this by allowing random numbers
to be copied as non-affine secret values which can never be revealed. Moreover, λobliv enforces
that random numbers do not influence the choice of whether or not they are revealed, since this
could also result in a non-uniform revelation. For example, a λobliv program cannot copy a random
number to a secret and then decide to reveal the original random number based on the value of
the copy. The type system prevents such behavior by using a new mechanism we call probability
regions to track the probabilistic (in)dependence of values in the program. (Probability regions are
missing in ObliVM, and their absence is the source of ObliVM’s unsoundness.) Section 4 outlines
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the proof that λobliv enjoys PMTO by relating its semantics to a novelmixed semantics whose terms
operate on distributions directly, which makes it easier to state and prove the PMTO property. Full
proofs may be found in the supplemental report [Darais et al. 2019].
λobliv is expressive enough to type check interesting algorithms. Section 5.2 presents the imple-

mentation of a tree-based, non-recursive ORAM (NORAM) that type checks in a straightforward
extension of λobliv; we have implemented a type checker for this extension. Such an NORAM is a
key component of state-of-the-art ORAM implementations [Shi et al. 2011; Stefanov et al. 2013;
Wang et al. 2015] and other oblivious data structures [Wang et al. 2014], and to our knowledge
ours is the first implementation automatically verified to be oblivious. Section 5.3 shows that
recursive ORAM, built on NORAM, is also possible but requires a few more advanced (but standard)
language features we have not implemented, including region polymorphism, recursive and variant
types, and existential quantification. We have also experimented with implementing oblivious data
structures using our NORAM; the supplemental report presents oblivious stacks (ostacks) in detail.
Unfortunately, λobliv’s strict ordering on probability regions is too strong, so the complete ostack
implementation will not typecheck. An interesting future direction would be to apply the approach
of Zhang et al. [2019a] to integrate λobliv’s type system with a general logic, such as that by Barthe
et al. [2020], which can be be used to justify that omitting the probability region order check is
(locally) safe. We elaborate in Section 6 when we discuss related work and make the case that λobliv
subsumes previous work on type system design for oblivious computation. Our type checker and
all code examples are online at https://github.com/plum-umd/oblivml.

2 OVERVIEW

This section first presents the threat model. Then it discusses deterministic oblivious execution,
considered by prior work. Finally, it sketches our novel type system for enforcing probabilistic

oblivious execution, which we develop in full in the rest of the paper.

2.1 Threat Model

We assume a powerful adversary that can make fine-grained observations about a program’s
execution. In particular, we use a generalization of the program counter (PC) security model [Molnar
et al. 2006]: The adversary knows the program being executed, and can observe during execution
the PC, the contents of memory, and memory access patterns. Some secret memory contents may
be encrypted (while public memory is not) but all addresses used to access memory are still visible.
Consider an untrusted cloud provider using a secure processor, like SGX [Hoekstra 2015].

Reads/writes from/to memory can be directly observed, but secret memory is encrypted (using
a key kept by the processor). The pattern of accesses, timing information, and other system
features (e.g., instruction cache misses) provide information about the PC. Another setting is
secure multi-party computation (MPC) using secret shares [Goldreich et al. 1987]. Here, two parties
simultaneously execute the same program (and thus know the program and program counter), but
certain valuesÐthe input values from each partyÐare kept hidden from both using secret sharing.
By handling such a strong adversary, our techniques can also handle adversaries with fewer

capabilities, such as those that can observe memory traffic but not the PC, or can make timing
measurements but cannot observe the PC or memory.

2.2 Oblivious Execution

Our goal is to ensure memory trace obliviousness (MTO), which is a kind of noninterference prop-
erty [Goguen and Meseguer 1982; Sabelfeld and Myers 2006]. This property states that despite
being able to observe each address (of instructions and data) as it is fetched, and each public value,
the adversary will not be able to infer anything about input secret values.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 50. Publication date: January 2020.

https://github.com/plum-umd/oblivml


50:4 David Darais, Ian Sweet, Chang Liu, and Michael Hicks

1 B[0] ← s0
2 B[1] ← s1
3 ...
4 let s = ... // secret bit
5 let r = B[s] // leaks s
6 // via address trace

1 B[0] ← s0
2 B[1] ← s1
3 ...
4 let s = ... // secret bit
5 let s0 ' = B[0]
6 let s1 ' = B[1]
7 let r ,_ = mux(s,s1 ', s0 ')

1 let sk = flip ()
2 let s0 ', s1 ' = mux(castS(sk),s1 , s0)
3 B[0] ← s0 '
4 B[1] ← s1 '
5 ...
6 let s = ... // secret bit
7 let s ' = xor(s , sk)
8 let r = B[castP(s ') ]

(a) Leaky program (b) Deterministic MTO program (c) Probabilistic MTO program

Fig. 1. Code examples

We can formalize this idea as a small-step operational semantics σ ; e −→t σ ′; e ′, which states
that an expression e in memory σ transitions to memory σ ′ and expression e ′ while emitting trace
event t . Trace events include fetched instruction addresses, public values, and addresses of public
and secret values that are read and written. (Secret values are not visible in the trace.) Under this
model, MTO means that running low-equivalent input states σ1; e1 and σ2; e2 will produce the exact
same memory trace, along with low-equivalent output states. Two states are low equivalent if
they agree on the code and public values (but may differ on secret values). More formally, MTO
states that if σ1; e1 ∼ σ2; e2 and σ1; e1 −→t σ ′1; e

′
1 then there exists σ ′2; e

′
2 s.t. σ2; e2 −→

t σ ′2; e
′
2 and

σ ′1; e
′
1 ∼ σ ′2; e

′
2, where ∼ denotes low-equivalence.

To illustrate how revealing addresses can leak information, consider the program in Figure 1(a).
Here, we assume array B’s contents are secret, and thus invisible to the adversary. Variables s0, s1,
and s are secret (i.e., encrypted) inputs. The assignments on the first two lines are safe since we are
just storing secret values in the secret array. The problem is on the last line, when the program uses
s to index B. Since the adversary is able to see which address was used (in trace t ), they can infer s.
The program in Figure 1(b) fixes the problem. It reads both secret values from B, and then uses

the mux to select the one indicated by s, storing it in r. The semantics of mux is that if the first
argument is 1 it pairs and returns the second two arguments in order, otherwise it swaps them. To
the adversary this appears as a single program instruction, and so nothing is learned about s via
branching. Moreover, nothing is learned from the address trace: We always unconditionally read
both elements of B, no matter the value of s.

While this approach is secure, it is inefficient: To read a single secret value in B this code reads all
values in B, to hide which one is being selected. If B were an array of size N , this approach would
turn an O(1) operation into an O(N ) operation.

2.3 Probabilistic Oblivious Execution

To improve performance while retaining security, the key is to employ randomness. In particular,
the client can randomly generate and hold secret a key, using it to map logical addresses used by the
program to physical addresses visible to the adversary. The program in Figure 1(c) illustrates the
idea, hinting at the basic approach to implementing an ORAM. Rather than deterministically store
s0 and s1 in positions 0 and 1 of B, respectively, the program scrambles their locations according to
a coin flip, sk, generated by the call to flip , and not visible to the adversary. Using the mux on line
2, if sk is 1 then s0 and s1 will be copied to s0 ' and s1 ' , respectively, but if sk is 0 then s0 and s1 will
be swapped, with s0 going into s1 ' and s1 going into s0 ' . (The castS coercion on sk is a no-op, used
by the type system; it will be explained in the next subsection.) Values s0 ' and s1 ' are then stored
at positions 0 and 1, respectively, on lines 3 and 4. When the program later wishes to look up the
value at logical index s, it must consult sk to retrieve the mapping. This is done via the xor on line 7.
Then s ' is used to index B and retrieve the value logically indicated by s.

In terms of memory accesses, this program is more efficient: It reads B only once, not twice. One
can argue that more work is done overall, but as we will see in Section 5, this basic idea does scale
up to build recursive ORAMs with access times of O(logc N ) for some c (rather than O(N )).
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1 let sx , sy = ( flip () , flip () )
2 let sz ,_ = mux (s,sx , sy)
3 output (castP(sz ) ) (∗ OK ∗)
4 output (castP(sx) ) (∗ Bad ∗)

1 let sx , sy = ( flip () , flip () )
2 let sk ,_ = mux(castS(sx),sx , sy)
3 let sz ,_ = mux(s,sk,flip () )
4 output (castP(sz ) ) (∗ Bad ∗)

(a) Leak by multiple revelation (b) Leak due to probabilistic dependence

Fig. 3. Example leaky programs (precluded by λobliv type system)

sk=0 sk=1

s=0 0,1,0 0,1,1
s=1 0,1,1 0,1,0

Fig. 2. Possible traces

This program is also secure: no matter the value of s, the adversary learns
nothing from the address trace. Consider Figure 2 which tabulates the four
possible traces (the memory indexes used to access B) depending on the
possible values of s and sk. This table makes plain that our program is not
deterministically MTO. Looking at column sk=0, we can see that a program
that has s=0 may produce trace 0,1,0 while a program that uses s=1 may
produce trace 0,1,1; MTO programs may not produce different traces when using different secrets.

But this is not actually a problem. Assuming that sk = 0 and sk = 1 are equally likely, we can see
that address traces 0,1,0 and 0,1,1 are also equally likely no matter whether s = 0 or s = 1. More
specifically, if we assume the adversary’s expectation for secret values is uniformly distributed,
then after conditioning on knowledge of the third memory access, the adversary’s expectation for
the secret remains unchanged, and thus nothing is learned about s. This probabilistic model of
adversary knowledge is captured by a probabilistic variant of MTO. In particular, the probability of
any particular trace event t emitted by two low-equivalent programs should be the same for both
programs, and the resulting programs should also be low-equivalent. More formally: If σ1; e1 ∼ σ2; e2
then Pr[σ1; e1 −→t σ ′1; e

′
1] = q implies Pr[σ2; e2 −→t σ ′2; e

′
2] = q and σ ′1; e

′
1 ∼ σ ′2; e

′
2.

2.4 λobliv: Obliviousness by Typing

The main contribution of this paper is λobliv, an expressive language whose type system guarantees
that programs are probabilistically MTO. λobliv’s type system’s power derives from two key features:
affine treatment of random values, and probability regions to track probabilistic (in)dependence
(i.e., correlation) between random values that could leak information when a value is revealed.
Together, these features ensure that each time a random value is revealed to the adversaryÐeven if
the value interacted with secrets, like the secret memory layout of an ORAMÐit is always uniformly

distributed, which means that its particular value communicates no secret information.

Affinity. In λobliv, public and secret bits are given types bitP and bitS respectively, and coin flips
are given type flip. Our formalism uses bits for simplicity; it is easy to generalize to (random
fixed-width) integers, which is done in our implementation. Values of flip type are, like secret bits
of type bitS, invisible to the adversary. But a flip can be revealed by using castP to convert it to a
public bit, as is done on line 8 of Figure 1(c) to perform a (publicly visible) array index operation.
The type system aims to ensure that a flip value is always uniformly distributed when it is

revealed. The uniformity requirement implies that each flip should be revealed at most once. Why?
Because the second time a flip is revealed, its distribution is conditioned on prior revelations,
meaning the each outcome is no longer equally likely. To see how this situation could end up
leaking secret information, consider the example in Figure 3(a). Lines 1ś3 in this code are safe:
we generate two coin flips that are invisible to the adversary, and then store one of them in sz

depending on whether the secret s is 1 or not. Revealing sz at line 3 is safe: regardless of whether sz

contains the contents of sx or sy, the fact that both are uniformly distributed means that whatever
is revealed, nothing can be learned about s. However, revealing sx on line 4, after having revealed
sz, is not safe. This is because seeing two ones or two zeroes in a row is more likely when sz is sx,
which happens when s is one. So this program violates PMTO.
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To prevent this problem, λobliv’s type system treats values of type flip affinely, meaning that
each can be used at most once. The read of sx on line 2 consumes that variable, so it cannot be used
again on the problematic line 4. Likewise, flip variable sk is consumed when passed to xor on line 7
of Figure 1(c), and s ' is consumed when revealed on line 8.

Unfortunately, a purely affine treatment of flips would preclude useful algorithms. In particular,
notice that line 2 of Figure 1(c) uses sk as the guard of a mux. If doing so consumed sk, line 7’s use
of sk would fail to type check. To avoid this problem, λobliv relaxes the affinity constraint on flips
passed to castS. In effect, programs can make many secret bitS copies of a flip, and compute with
them, but only the original flip can ultimately be revealed.
It turns out that this relaxed treatment of affinity is insufficient to ensure PMTO. The reason is

that we can now use non-affine copies of a coin to make a flip’s distribution non-uniform when it
is revealed. To see how, consider the code in Figure 3(b). This code flips two coins, and then uses
the mux to store the first coin flip, sx, in sk if sx is 1, else to store the second coin flip there. Now sk

is more likely to be 1 than not: Pr[sk = 1] = 3
4 while Pr[sk = 0] = 1

4 . On line 3, the mux will store
sk in sz if secret s is 1, which means that if the adversary observes a 1 from the output on line 4, it is
more likely than not that s is 1. The same sort of issue would happen if we replaced line 1 from
Figure 1(c) with the first two lines above: when the program looks up B[castP(s ') ] on line 8, if the
adversary observes 1 for the address, it is more likely that s is 0, and vice versa if the adversary
observes 1. Notice that we have not violated affinity here: no coin flip has been used more than
once (other than uses of castS which side-step affinity tracking). The problematic correlation in
Figure 3(b) is incorrectly allowed by ObliVM [Liu et al. 2015b], and is the root of its unsoundness.

Probability regions. λobliv’s type system addresses the problem of probabilistic correlations leading
to non-uniform distributions using a novel construct we call probability regions, which are static
names that represent sets of coin flips, reminiscent of a points-to location in alias analysis [Emami
et al. 1994]. We have elided the region name in our examples so far, but normally programmers
should write flip

ρ () for flipping a coin in region ρ, which then has type flip
ρ . Bits derived from

flips via castS carry the region of the original flip, so bit types also include a region ρ.
Regions form a partial order, and the type system enforces an invariant that each flip labeled

with region ρ is probabilistically independent of all bits derived from flips at regions ρ ′ when
ρ ′ ⊏ ρ. Then, the type system will prevent problematic correlations arising among bits and flips,
in particular via the mux and xor operations, in a way that could threaten uniformity. We can see
regions at work in the problematic example above: the region of the secret bit castS(sx) is the same
region as sx, since castS(sx) was derived from sx. As such, there is no assurance of probabilistic
independence between the guard and the branch; indeed, when conditioning on castS(sx) to return
sx, the output will not be uniform. On the other hand, if the guard of a mux is a bit in region ρ and
its branches are flips in region ρ ′ where ρ ⊏ ρ ′, then the guard is derived from a flip that is sure to
be independent of the branches, so the uniformity of the output is not threatened. This kind of
provable independence is a critical piece of our Tree ORAM implementation in Section 5.

3 FORMALISM

This section presents the syntax, semantics, and type system of λobliv. The following section proves
that λobliv’s type system is sufficient to ensure PMTO.

3.1 Syntax

Figure 4 shows the syntax for λobliv. The term language is expressions e . The set of values v is
comprised of (1) base values such as variables x (included to enable a substitution-based semantics)
and recursive function definitions funy (x :τ ).e where the function body may refer to itself using
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ℓ ∈ labelF P | S public and secret
(where P ⊏ S) security labels

ρ ∈ R F . . . probability region
b ∈ BF O | I bits

x ,y ∈ varF . . . variables
v ∈ valF x variable values

| funy (x :τ ).e function values
| ⟨v,v⟩ tuple values

τ ∈ typeF bit
ρ

ℓ
non-random bit

| flip
ρ secret uniform bit

| ref(τ ) reference
| τ × τ tuple
| τ → τ function

e ∈ expF v value expressions
| bℓ bit literal
| flip

ρ () coin flip in region
| castℓ(v) cast flip to bit
| mux(e, e, e) atomic conditional
| xor(e, e) bit xor
| if(e){e}{e} branch conditional
| ref(e) reference creation
| read(e) reference read
| write(e, e) reference write
| ⟨e, e⟩ tuple creation
| let x = e in e variable binding
| let x ,y = e in e tuple elimination
| e(e) fun. application

Fig. 4. λobliv Syntax (source programs)

variabley; and (2) connectives from the expression language e which identify a subset of expressions
which are also values, such as pairs ⟨v,v⟩ with type τ × τ .

Expressions also include bit literals bℓ (of type bit
⊥
ℓ
) which are either O or I and annotated with

their security label ℓ.1 A security label ℓ is either S (secret) or P (public). Values with the label S
are invisible to the adversary. Bit types include this security label along with a probability region
ρ. The expression flip

ρ () produces a flip value, i.e., a uniformly random bit of type flip
ρ . The

annotation assigns the coin to region ρ. Coin flips are semantically secret, and have limited use;
we can compute on one using mux or xor, cast one to a public bit via castP, or cast to a secret bit via
castS. To simplify the type system, casts only apply to values, however castℓ(e) could be used as
shorthand for let x = e in castℓ(x).
The expression mux(e1, e2, e3) unconditionally evaluates e2 and e3 and returns their values as a

pair in the given order if e1 evaluates to I, or in the opposite order if it evaluates to O. This operation
is critical for obliviousness because it is atomic. By contrast, normal conditionals if(e1){e2}{e3}

evaluate either e2 or e3 depending on e1, never both, so the branch taken is evident from the trace.
The components of tuples e constructed as ⟨e1, e2⟩ can be accessed via let x1,x2 = e in ... λobliv
also has normal let binding, function application, and means to manipulate mutable reference cells.
λobliv captures the key elements that make implementing oblivious algorithms possible, notably:

random and secret bits, trace-oblivious multiplexing, public revelation of secret random values,
and general computational support in tuples, conditionals and recursive functions. Other features
can be encoded in these, e.g., general numbers and operators on them can be encoded as tuples of
bits, and arrays can be encoded as tuples of references (read/written using (nested) conditionals).
Our prototype interpreter implements these things directly.

3.2 Semantics

Figure 5 presents a monadic, probabilistic small-step semantics for λobliv programs. The top of the
figure contains some new and extended syntax. Values (and, by extension, expressions) are extended
with forms for bit values bitvℓ(b), flip values flipv(b), and reference locations locv(ι); these do not
appear in source programs. Stores σ map locations to values. Stores are paired with expressions to
form configurations ς . A sequence of configurations arising during an evaluation is collected in a
trace t . We define evaluation contexts E (not shown) in the style of Felleisen and Hieb [1992] to
enforce a left-to-right, call-by-value evaluation strategy.

1Bit literals are not values to create symmetry with the alternative, mixed semantics in the next section.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 50. Publication date: January 2020.



50:8 David Darais, Ian Sweet, Chang Liu, and Michael Hicks

ι ∈ loc ≈ N ref locations
v ∈ valF . . . extended. . .

| bitvℓ(b) bit value
| flipv(b) uniform bit value
| locv(ι) location value

σ ∈ store ≜ loc⇀ val store
e ∈ expF . . . extended. . .
ς ∈ configF σ , e configuration
t ∈ traceF ϵ | t ·ς trace
E ∈ contextF . . . eval contexts. . .

stepM ∈ N × config⇀M(config)

stepM (N ,σ ,bℓ) = return(σ , bitvℓ(b))
stepM (N ,σ , flip

ρ ()) = do b ← bit(N ) ; return(σ , flipv(b))
stepM (N ,σ , castℓ(flipv(b))) = return(σ , bitvℓ(b))
stepM (N ,σ , mux(bitvℓ1 (b1), bitvℓ2 (b2), bitvℓ3 (b3))) = return(σ , ⟨bitvℓ(cond(b1,b2,b3)), bitvℓ(cond(b1,b3,b2))⟩)

where ℓ ≜ ℓ1 ⊔ ℓ2 ⊔ ℓ3
stepM (N ,σ , mux(bitvℓ(b1), flipv(b2), flipv(b3))) = return(σ , ⟨flipv(cond(b1,b2,b3)), flipv(cond(b1,b3,b2))⟩)
stepM (N ,σ , if(bitvℓ(b)){e1}{e2}) = return(σ , cond(b, e1, e2))
stepM (N ,σ , xor(bitvℓ(b1), flipv(b2))) = return(σ , flipv(b1 ⊕ b2))
stepM (N ,σ , ref(v)) = return(σ [ι 7→ v], refv(ι)) where ι < dom(σ )
stepM (N ,σ , read(refv(ι))) = return(σ ,σ (ι))
stepM (N ,σ , write(refv(ι),v)) = return(σ [ι 7→ v],σ (ι))

stepM (N ,σ , let x = v in e) = return(σ , [v/x]e)
stepM (N ,σ , let x1,x2 = ⟨v1,v2⟩ in e) = return(σ , [v1/x1][v2/x2]e)
stepM (N ,σ , (funy (x : τ ). e

v1

)(v2)) = return(σ , [v1/y][v2/x]e)

stepM (N ,σ ,E[e]) = do σ ′, e ′ ← stepM (N ,σ , e) ; return(σ
′,E[e ′])

stepM (N ,σ ,v) = return(σ ,v)

nstepM ∈ N × config⇀M(trace)

nstepM (0, ς) = return(ϵ ·ς)
nstepM (N + 1, ς) = do t ·ς ′ ← nstepM (N , ς) ; ς

′′ ← stepM (N + 1, ς
′) ; return(t ·ς ′·ς ′′)

x̃ ∈ D(A) ≜

{
f ∈ A→ R

����
∑
x ∈A

f (x) = 1

}
Pr [x̃ Û= x] ≜ x̃(x) D(A) ∈ set

return ∈ D(A) bind ∈ D(A) × (A→ D(B)) → D(B) bit ∈ N→ D(B)

return(x) ≜ λx ′.

{
1 if x = x ′

0 if x , x ′
bind(x̃ , f ) ≜ λy.

∑
x
f (x)(y)x̃(x) bit(N ) ≜ λb . 1/2

Fig. 5. λobliv Semantics

The semantics is defined using an abstract probability monadM. Below the semantics we define
the standard łdenotationalž discrete probability monad D [Giry 1982; Ramsey and Pfeffer 2002a].
The standard semantics for our language occurs whenM = D, and we leaveM a parameter so
we can instantiate the semantics to a new monad in the next section.

In the probability monad D, the return operation constructs a point distribution, and the bind
operation encodes the law of total probability, i.e., constructs a marginal distribution from a
conditional one. We only use proper distributions in the sense that the combined mass of all
elements sums to 1. We do not denote possibly non-terminating programs directly into the monad,
and therefore do not require the use of computable distributions [Huang and Morrisett 2016] or
sub-probability distributions [Monniaux 2000]Ðwe use the monad only to denote distributions of
configurations which occur after a finite number of small-step transitions, which is total.
The definition of stepM describes how a single configuration advances in a single probabilistic

step, yielding a distribution of resulting configurations. The definition uses Haskell-style do notation
as the usual notation for bind. Starting from the bottom, we can see that a valuev advances to itself
(more on why, below) and evaluating a redex e within a context E steps the former and packages
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its result back with the latter, as usual. The cases for let binding, pair deconstruction, and function
application are standard, using a substitution-based semantics. Likewise, rules for creating, reading,
and writing from references operate on the store σ as usual.
Moving to the first case, we see that literals bℓ evaluate in one step to bit values. A flip

ρ ()

expression evaluates to either flipv(I) or flipv(O) as determined by bit(N ), which for the monad
D yields 1/2 probability for each outcome. (The monad D does not use the N parameter in its
definition of bit(N ), but a later monad will.) The castℓ case converts a flip to a similarly-labeled bit
value. The next few cases use the three-argument metafunction cond(b,X ,Y ), which returns X if
b is I, and Y otherwise. The two mux cases operate in a similar way: they return the second two
arguments of the mux in order when the first argument is bitvℓ(I), and in reverse order when it is
bitvℓ(O). The security label of the result is the join of the labels of all elements in involved. (This is
not needed for flip values, since these are always fixed to be secret.) The case for if also uses cond
in the expected manner. The case for xor permits xor-ing a bit with a flip, returning a flip.
The bottom of the figure defines function nstepM(N , ς). It composes N invocations of stepM

starting at ς to produce a distribution of traces t .
Both stepM and nstepM are partial in the usual way: They are undefined (łstuckž) for nonsensical

programs like locv(ι)(bitvℓ(b)) (treating a reference location as if it were a function). The λobliv type
system, explained next, rejects such programs while also ensuring PMTO.

3.3 Type System

Figure 6 defines the type system for λobliv source programs as rules for judgment Γ ⊢ e : τ ; Γ′,
which states that under type environment Γ expression e has type τ , and yields residual type
environment Γ′. We discuss typing configurations, including non-source program values, in the
next section. Type environments map variables to either types τ or inaccessibility tags •, which
are used to enforce affinity of flips. We discuss the three key features of the type systemÐaffinity,
probability regions, and information flow controlÐin turn.

Affinity. To enforce non-duplicability, when an affine variable is used by the program, its type is
removed from the residual environment. Figure 6 defines kinding metafunction K that assigns a
type either the kind universal U (freely duplicatable) or affine A (non-duplicatable). Bits, functions,
and references (but not their contents, necessarily) are always universal, and flips are always affine.
A pair is considered affine if either of its components is. Rule VarU in Figure 6 types universally-
kinded variables; the output environment Γ is the same as the input environment. Rule VarA types
an affine variable by marking it • in the output environment. This rule is sufficient to rule out the
first problematic example in Section 2.4.

Rules Cast-S and Cast-P permit converting flips to bits via the castS and castP coercions, respectively.
The first converts a flip

ρ to a bit
ρ

S and does not make its argument inaccessible (it returns the
original Γ) while the second converts to a bit

⊥
P and does make it inaccessible (returning Γ

′). The
type system is enforcing that any random number is made adversary-visible at most once; secret
copies are allowed because they are never revealed.

References may contain affine values, but references themselves are universal. Rather than track
the affinity of aliased contents specifically, the Read rule disallows reading out of a reference cell
whose contents are affine. Since the write operation returns the old contents of the cell, programs
can see the existing contents of any reference by first writing in a valid replacement [Baker 1992].
The Fun rule ensures that no affine variables in the defining context are consumed within the

body of the function, i.e., they are not captured by its closure. We write Γ ⊎ [x 7→ ,y 7→ ] to
split a context into a part that binds x and y and a part Γ that binds the rest; the Γ part is returned,
dropping the x and y bindings. Both Let and Let-Tup similarly remove their bound variables.
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•
τ ∈ t

•
ypeF τ | • (where τ ⊏ •)

κ ∈ kindF U | A (where U ⊏ A)

Γ ∈ tcxt ≜ var ⇀ t
•
ype

(Γ1 ⊔ Γ2)(x) ≜ Γ1(x) ⊔ Γ2(x)

K ∈ type→kind

K(bit
ρ

ℓ
) ≜ K(τ1→τ2) ≜ K(ref(τ )) ≜ U K(flipρ ) ≜ A K(τ1×τ2) ≜ K(τ1)⊔K(τ2)

Γ ⊢ e : τ ; ΓVarU

K(Γ(x)) = U

Γ(x) = τ

Γ ⊢ x : τ ; Γ

VarA

K(Γ(x)) = A

Γ(x) = τ

Γ ⊢ x : τ ; Γ[x 7→•]

Bit

Γ ⊢ bℓ : bit⊥
ℓ
; Γ

Flip

Γ ⊢ flip
ρ () : flipρ ; Γ

Cast-S

Γ ⊢ x : flipρ ;

Γ ⊢ castS(x) : bit
ρ
S ; Γ

Cast-P

Γ ⊢ x : flipρ ; Γ′

Γ ⊢ castP(x) : bit
⊥
P ; Γ′

If

Γ
′ ⊢ e1 : τ ; Γ′′1

Γ ⊢ e : bit⊥P ; Γ′ Γ
′ ⊢ e2 : τ ; Γ′′2

Γ ⊢ if(e){e1}{e2} : τ ; Γ′′1 ⊔ Γ
′′
2

Mux-Bit

Γ ⊢ e1 : bit
ρ1
ℓ1

; Γ′

Γ
′ ⊢ e2 : bit

ρ2
ℓ2

; Γ′′ ℓ = ℓ1⊔ℓ2⊔ℓ3
Γ
′′ ⊢ e3 : bit

ρ3
ℓ3

; Γ′′′ ρ = ρ1⊔ρ2⊔ρ3

Γ ⊢ mux(e1, e2, e3) : bit
ρ

ℓ
×bit

ρ

ℓ
; Γ′′′

Mux-Flip

Γ ⊢ e1 : bit
ρ1
ℓ1

; Γ′ ρ1 ⊏ ρ2

Γ
′ ⊢ e2 : flip

ρ2 ; Γ′′ ρ1 ⊏ ρ3
Γ
′′ ⊢ e3 : flip

ρ3 ; Γ′′′ ρ = ρ1⊔ ρ2⊔ρ3

Γ ⊢ mux(e1, e2, e3) : flip
ρ×flipρ ; Γ′′′

Xor-Flip

Γ ⊢ e1 : bit
ρ1
ℓ1

; Γ′

Γ
′ ⊢ e2 : flip

ρ2 ; Γ′′ ρ1 ⊏ ρ2

Γ ⊢ xor(e1, e2) : flip
ρ2 ; Γ′′

Ref

Γ ⊢ e : τ ; Γ′

Γ ⊢ ref(e) : ref(τ ) ; Γ′

Read

K(τ ) = U

Γ ⊢ e : ref(τ ) ; Γ′

Γ ⊢ read(e) : τ ; Γ′

Write

Γ ⊢ e1 : ref(τ ) ; Γ
′

Γ
′ ⊢ e2 : τ ; Γ′′

Γ ⊢ write(e1, e2) : τ ; Γ′′

Tup

Γ ⊢ e1 : τ1 ; Γ
′

Γ
′ ⊢ e2 : τ2 ; Γ

′′

Γ ⊢ ⟨e1, e2⟩ : τ1 × τ2 ; Γ
′′

Fun

Γ
+
= Γ ⊎ [x 7→τ1,y 7→(τ1→τ2)]

Γ
+ ⊢ e : τ2 ; Γ

+′
Γ
+′
= Γ ⊎ [x 7→ ,y 7→ ]

Γ ⊢ funy (x : τ1). e : τ1 → τ2 ; Γ

App

Γ ⊢ e1 : τ1 → τ2 ; Γ
′

Γ
′ ⊢ e2 : τ1 ; Γ

′′

Γ ⊢ e1(e2) : τ2 ; Γ
′′

Let

Γ ⊢ e1 : τ1 ; Γ
′

Γ
′+
= Γ
′ ⊎ [x 7→τ1]

Γ
′+ ⊢ e2 : τ2 ; Γ

′′+
Γ
′′+
= Γ
′′ ⊎ [x 7→ ]

Γ ⊢ let x = e1 in e2 : τ2 ; Γ
′′

Let-Tup

Γ ⊢ e1 : τ1 × τ2 ; Γ
′

Γ
′+
= Γ
′ ⊎ [x1 7→τ1,x2 7→τ2]

Γ
′+ ⊢ e2 : τ3 ; Γ

′′+
Γ
′′+
= Γ
′′ ⊎ [x1 7→ ,x2 7→ ]

Γ ⊢ let x1,x2 = e1 in e2 : τ3 ; Γ
′′

Fig. 6. λobliv Type System (source programs)

Finally, note that different variables could be made inaccessible in different branches of a condi-
tional, so If types each branch in the same initial context, but then joins their the output contexts;
if a variable is made inaccessible by one branch, it will be inaccessible in the joined environment.

Contexts are joined pointwise, and the join of two pointed types
•
τ 1 ⊔

•
τ 2 is • when either

•
τ i is •,

the same as
•
τ i when both

•
τ i are equal and not •, and undefined otherwise.

Information flow. The type system aims to ensure that bits bℓ whose security label ℓ is secret
S cannot be learned by an adversary. Bit types bit

ρ

ℓ
include the security label ℓ. The rules treat

types with different labels as distinct, preventing so-called explicit flows. For example, the Write

rule prevents assigning a secret bit (of type bit
ρ

S ) to a reference whose type is ref(bit
ρ

P ). Likewise,
a function of type bit

ρ

P → τ cannot be called with an argument of type bit
ρ

S , per the App rule. In
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our implementation we relax App (but not Write, due to the invariance of reference types) to allow
public bits when secrets are expected; this is not done here just to keep things simpler.

The rules also aim to prevent implicit information flows. A typical static information flow type
system [Sabelfeld and Myers 2006] would require the type of the conditional’s guard to be less
secret than the type of what it returns; e.g., the guard’s type could be bit

ρ

S
but only if the final

type τ is secret too. However, in λobliv we must be more restrictive: rule If requires the guard to be
public since the adversary-visible execution trace reveals which branch is taken, and thus the truth
of the guard. Branching on secrets must be done via mux. Notice that rule Mux-Bit sets the label ℓ of
the each element of the returned pair to be the join of the labels on the guard and the remaining
components. As such, if the guard was secret, then the returned results will be. The Mux-Flip rule
always returns flips, which are invisible to the adversary, so the guard can be secret or public.

Probability regions. A probability region ρ appears on both bit and flip types. The region is a
static name for a collection of flip values and secret bit values that may be derived from them. A flip
value is associated with a region ρ when it is created, per rule Flip. Rule Cast-S ascribes the region ρ

from the input flip
ρ to the output type bit

ρ

S
, tracking the flip value(s) from which the secret bit

value was possibly derived. Per rule Bit, bit literals have probability region ⊥, as do public bits
produced by castP, per rule Cast-P.
Regions form a join semi-lattice. The type system maintains the invariant that flips at region

ρ are probabilistically independent of all secret bits in regions ρ ′ when strictly ordered ρ ′ ⊏ ρ.
Strict ordering is used because it is irreflexive and asymmetric. The semantic property of interestÐ
probabilistic independenceÐis likewise irreflexive (except for point distributions), and asymmetry
restricts future mux operations between values in one direction only; we say more below.
Consider the Mux-Flip rule. If a secret bit is typed at region ρ1 and a flip value at region ρ2, and

ρ1 ̸⊏ ρ2, then it may be that the values are correlated, and a mux involving the values may produce
flips that are non-uniform. Both the Mux-Flip and Mux-Bit rules return outputs whose region is the
join of the regions of all inputs, indicating that the result of the mux is only independent of values
that were jointly independent of each of its components.

Because freshly generated random bits are always independent of each other, the programmer is
free to choose any regions when generating them via flip

ρ () expressions. However, once chosen,
the ordering establishes an invariant which constrains the order in which mux operations can
occur subsequently in the program. Requiring strict region ordering for mux operations is enough
to reject the example from the end of Section 2.4, as it could produce a non-uniform coin sk. We
recast the example below, labeled (a), using regions ρ1 ⊏ ρ2.

1 let sx , sy = ( flipρ1 () , flipρ2 () )
2 let sk ,_ = mux(castS(sx),sx , sy)

(a) Incorrect example

1 let sx = flipρ1 () in
2 let sy , sz = mux(castS(sx),flipρ2 () , flipρ2 () )

(b) Correct example

The type checker first ascribes types flip
ρ1 and flip

ρ2 to sx and sy, respectively, according to rules
Let-Tup, Flip, and Tup. It uses Cast-S to give castS(sx) type bit

ρ1
S

and leaves sx accessible so that VarA
can be used to give it and sy types flip

ρ1 and flip
ρ2 , respectively (then making them inaccessible).

Rule Mux-Flip will now fail because the independence conditions do not hold. In particular, the
region ρ1 of the guard is not strictly less than the region ρ1 of the second argument, i.e., ρ1 ̸⊏ ρ1.
The program labeled (b) above is well-typed. Here, the bit in the guard has region ρ1, the region
of the two flips is ρ2 and ρ1 ⊏ ρ2 as required by Mux-Flip. It is easy to see that both sy and sz are
uniformly distributed and independent of sx.
Rule Xor-Flip permits xor’ing a secret with a flip, returning a flip, as long as the secret’s region

and the flip’s region are well ordered, which preserves uniformity.
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•
v ∈ v

•
alueF . . . | •

•
e ∈ e

•
xpF . . . | •

•
σ ∈ st

•
ore ≜ loc⇀ v

•
alue

•
ς ∈ co

•
nfigF

•
σ ,
•
e

•
t ∈ tr

•
aceF ϵ |

•
t ·
•
ς

obs ∈ (exp→ e
•
xp) × (store→ st

•
ore) × (config→ co

•
nfig) × (trace→ tr

•
ace)

obs(x) ≜ x

obs(funy (x : τ ). e) ≜ funy (x : τ ). obs(e)
obs(bitvP (b)) ≜ bitvP (b)

obs(bitvS (b)) ≜ •

obs(flipv(b)) ≜ •

obs(locv(ι)) ≜ •

obs(bP ) ≜ bP
obs(bS ) ≜ •

obs(flipρ ()) ≜ flip
ρ ()

obs(castℓ(v)) ≜ castℓ(obs(v))

obs(mux(e1, e2, e3)) ≜ mux(obs(e1), obs(e2), obs(e3))
obs(xor(e1, e2)) ≜ xor(obs(e1), obs(e2))
obs(if(e1){e2}{e3}) ≜ if(obs(e1)){obs(e2)}{obs(e3)}
obs(ref(e)) ≜ ref(obs(e))
obs(read(e)) ≜ read(obs(e))
obs(write(e1, e2)) ≜ write(obs(e1), obs(e2))
obs(⟨e1, e2⟩) ≜ ⟨obs(e1), obs(e2)⟩
obs(let x = e1 in e2) ≜ let x = obs(e1) in obs(e2)
obs(let x ,y = e1 in e2) ≜ let x ,y = obs(e1) in obs(e2)
obs(e1(e2)) ≜ obs(e1)(obs(e2))

obs(σ ) ≜ {ι 7→obs(v) | ι 7→v∈σ }

obs(σ , e) ≜ obs(σ ), obs(e)
obs(ϵ) ≜ ϵ

obs(t ·ς) ≜ obs(t)·obs(ς)

õbs(t̃) ≜ do t ← t̃ ; return(obs(t)) õbs ∈ D(trace) → D(tr
•
ace)

Fig. 7. Adversary observability

We might be tempted not to order regions but instead maintain an invariant that flips and bits in
distinct regions are independent. This turns out to not work. While at the outset a fresh flip value
is independent of all other values in the context of the program, the region ordering is needed to
ensure that mux operations will only occur in łone direction.ž E.g., if two fresh flip values are created
x = flip

ρ1 () and y = flip
ρ2 , it is true that x and y are mutually independent. Thus it would seem

reasonable that mux(castS (x),y, . . .) and mux(castS (y),x , . . .) should both be well typed. While they
are both safe in isolation, the combination is problematic. Consider the results of each muxÐthey are
both flip values, and they are both valid to reveal using castP individually. However, the resulting
values are correlated (revealing one tells you information about the distribution of the other), which
violates the uniformity guarantee of all castP results. By ordering the regions, we are essentially
promising to only allow mux operations like this in one direction but not the other, and therefore
uniformity is never violated for revealed flip values. For example, by requiring ρ1 ⊏ ρ2 we allow
the first mux above but not the second.

Type safety. λobliv is type safe in the traditional sense, i.e., that a well-typed program will not
get stuck. However, our interest is in the stronger property that type-safe λobliv programs do not
reveal secret information via inferences an adversary can draw from observing their execution. We
state and prove this stronger property in the next section.

4 PROBABILISTIC MEMORY TRACE OBLIVIOUSNESS

The main metatheoretic result of this paper is that λobliv’s type system ensures probabilistic memory
trace obliviousness (PMTO). This section defines this property, and then walks through its proof.

4.1 What is PMTO?

Figure 7 presents a model obs of the adversary’s view of a computation as a new class of values,
expressions and traces that łhidež sub-expressions considered to be secret (written •). Secret bit
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expressions, secret bit values, and secret flip values all map to •. Compound values, expressions,
stores, traces etc. call obs in recursive positions as expected.
Probabilistic memory trace obliviousness (PMTO), stated formally below, holds when observa-

tionally equivalent configurations induce distributions of traces that are themselves observationally
equivalent after N steps, for any N .2

Proposition 4.1 (Probabilistic Memory Trace Obliviousness (PMTO)).

If: e1 and e2 are closed source expressions, ⊢ e1 : τ , ⊢ e2 : τ and obs(e1) = obs(e2)
Then: (1) nstepD(N ,�, e1) and nstepD(N ,�, e2) are defined

And: (2) õbs(nstepD(N ,�, e1)) = õbs(nstepD(N ,�, e2)).

(1) ensures that information is not leaked due to lack of progress, i.e., if either program gets łstuck,ž
and that the main property (2) applies to all related, well-typed source expressions e1 and e2.

4.2 Proof Approach

t̂2

e2 t̂1

e1 t̂2

t̂1

=
⌈̂·⌉̂

(L4.2)

nstepI

nstepI

=
⌈̂·⌉̂

(L4.2)

≈∼ (L4.5)

nstepI

nstepI=obs

≈=obs (L4.6)

Fig. 8. Proof Approach as a Diagram

The remainder of this section works through
our proof of PMTO (Theorem 4.7) which we
complete in the following steps: (1) we develop
a new probability monad called łintensional
distributionsž which simplifies reasoning about
conditional independence between probabilis-
tic values (ğ4.4); (2) we define an alternative syn-
tax, semantics and type system for λobliv pro-
grams called the łmixed semanticsž which uses
intensional distributions to simplify inductive
reasoning about the adversary’s view of prob-
abilistic secret values (ğ4.3, ğ4.5); (3) we show
that evaluation in the mixed semantics corre-
sponds exactly with the ground truth semantics
through simulation lemmas; (4) we prove that
key invariants about probabilistic values are
ensured by well-typed mixed terms, and that terms remain well-typed throughout evaluationÐthis
establishes PMTO for the mixed semantics; and (5) we demonstrate PMTO for the ground truth
semantics as a consequence of lemmas established in steps (3ś4) and a soundness lemma relating
equivalent distributions of mixed terms to adversary-equivalent distributions of standard terms.
In Figure 8 we summarize the structure of this proof approach in a diagram. On the left are

two programs e1 and e2 which are equal modulo adversary observation =obs, which translates
to obs(e1) = obs(e2) as sketched in Proposition 4.1, and means e1 and e2 agree on public values
and program structure but may differ in secrets. The rightward moving arrows represent running
each program in either the ground truth semantics stepIÐthe same semantics from Figure 5 but
instantiated with the intensional distribution monad IÐand the mixed semantics stepI . Each of
these executions result in intensional distributions of standard and mixed traces, respectively. In
step (3) above we prove Lemma 4.2 to show these distributions are equivalent according to =

⌈̂ · ⌉̂

which uses ⌈̂·⌉̂ to project distributions of mixed traces to distributions of standard traces. In step
(4) above we prove Lemma 4.5 to establish PMTO for the mixed semantics; i.e., that the resulting
distributions of mixed traces are equivalent modulo an underlying low-equivalence relation ≈∼. In

2Noninterference properties are often stated with a non-empty store. Our notion of expression equivalence is simpler, and
supports low-equivalent expressions that pre-populate such a store, so there is no loss of generality.
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step ∈ N × config⇀ I(config)

step(N ,σ ,bℓ) ≜ return(σ , bitvℓ(return(b)))
step(N ,σ , flipρ ()) ≜ return(σ , flipv(bit(N )))
step(N ,σ , castS (flipv(b̂))) ≜ return(σ , bitvS (b̂))
step(N ,σ , castP (flipv(b̂))) ≜ do b ← b̂ ; return(σ , bitvP (return(b)))

step(N ,σ , mux(bitvℓ1 (b̂1), bitvℓ2 (b̂2), bitvℓ3 (b̂3))) ≜ return(σ , ⟨bitvℓ(�cond(b̂1, b̂2, b̂3)), bitvℓ(�cond(b̂1, b̂3, b̂2))⟩)
where ℓ ≜ ℓ1 ⊔ ℓ2 ⊔ ℓ3

step(N ,σ , mux(bitvℓ(b̂1), flipv(b̂2), flipv(b̂3))) ≜ return(σ , ⟨flipv(�cond(b̂1, b̂2, b̂3)), flipv(�cond(b̂1, b̂3, b̂2))⟩)
step(N ,σ , xor(bitvℓ1 (b̂1), flipv(b̂2))) ≜ return(σ , flipv(b̂1 ⊕̂ b̂2))

step(N ,σ , if(bitvℓ(b̂)){e1}{e2}) ≜ do b ← b̂ ; return(σ , cond(b, e1, e2))
step(N ,σ , ref(v)) ≜ return(σ [ι 7→ v], refv(ι)) where ι < dom(σ )
step(N ,σ , read(refv(ι))) ≜ return(σ ,σ (ι))
step(N ,σ , write(refv(ι),v)) ≜ return(σ [ι 7→ v],σ (ι))

step(N ,σ , let x = v in e) ≜ return(σ , e[v/x])
step(N ,σ , let x1,x2 = ⟨v1,v2⟩ in e) ≜ return(σ , e[v1/x1][v2/x2])
step(N ,σ , (funy (x : τ ). e

v1

)(v2)) ≜ return(σ , e[v1/y][v2/x])

step(N ,σ ,E[e]) ≜ do σ ′, e ′ ← step(N ,σ , e) ; return(σ ′,E[e ′])
step(N ,σ ,v) ≜ return(σ ,v)

nstep ∈ N × config⇀ I(trace)

nstep(0, ς) ≜ return(ϵ ·ς)

nstep(N + 1, ς) ≜ do t ·ς ′ ← nstep(N , ς) ; ς ′′ ← step(N + 1, ς ′) ; return(t ·ς ′·ς ′′)

Fig. 9. Mixed Language Semantics, where b̂ ∈ I(B) is a distributional bit value (see text)

step (5) we prove Lemma 4.6, which combines results from (3ś4) to establish PMTO for the standard
semantics (instantiated withI)Ðthe resulting distributions of standard traces are equivalent modulo
equality of adversary observations, notated ≈=obs . The last step of PMTO (Theorem 4.7) is not shown:
Lemma 4.3 proves via simulation that the intensional distribution monad I corresponds with the
usual denotational probability monad presented in Section 3.

4.3 Mixed Semantics

An intuitive approach to proving Proposition 4.1 is to prove that a single-step version of it holds
for stepD , and then use that fact in an inductive proof over nstepD . Unfortunately, proving the
single-step version quickly runs into trouble. Consider a source program castP(flip

ρ ()) which steps
to each of the expressions castP(flipv(I)) and castP(flipv(O)) with probability 1/2. These expressions
are observationally equivalentÐthe adversary’s view of each is castP(•). For single-step PMTO to
be satisfied, each of these terms must step to an equivalent distribution. Unfortunately, they do not:
The first produces a point distribution of the expression bitvP(I) and the second produces a point
distribution of the expression bitvP(O), which are not observationally the same.

To address this problem, we define an alternative mixed semantics which embeds distributional
bit values directly into (single) traces. Instead of the semantics of flipρ () producing two possible
outcomes, in the mixed semantics it produces just one: a single distributional value flipv(b̂) where
the b̂ represents either I or O with equal probability. Doing this is like treating flip

ρ () expressions
lazily, and lines up (mixed) traces with the adversary’s view •.

The mixed semantics amends the syntax of flipv and bitvℓ to be distributional (i.e., they contain b̂
rather than justb). Other values from the standard semantics’ syntax (top of Figure 5) are unchanged.
As such, a distribution of pairs of bit values (say) is represented as pair of distributional bit values.
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To allow values inside the pair to be correlated, we represent them using what we call intensional
distributionsÐintensional distributions are written I(A) and discussed in the next subsection.

The mixed semantics is shown in Figure 9. The mixed semantics step function step(N ,σ , e)maps
a configuration, ς ≜ σ , e to an intensional distribution of configurations I(config). Mixed semantics
expressions (and values, etc.) are underlined to distinguish them from the standard semantics, and
operations on distributional values are hatted.
Most of the cases for the mixed semantics are structurally the same as the standard semantics.

The key differences are the handling of flipρ () and castℓ(v). For the first, the standard semantics
samples from the fresh uniform distribution immediately, while the mixed semantics produces a
single uniform distributional value. This distributional value is sampled at the evaluation of castP ,
which matches the adversary’s view.

A secret literal will produce a point distribution on that literal. The semantic operations for if, mux
and xor are lifted monadically to operate over distributions of secrets, e.g., b̂1 ⊕̂ b̂2 ≜ do b1 ← b̂1 ;
b2 ← b̂2 ; return(b1 ⊕ b2). Other operations are as usual, e.g., let expressions and tuple elimination
reduce via substitution and are not lifted to distributions.

4.4 Capturing Correlations with Intensional Distributions

As mentioned, a distributional bit value b̂ can be viewed as a lazy interpretation of a call flipρ (). To
be sound, this interpretation must properly model conditional probabilities between variables.

Example. Consider the program let x = flip
ρ () in ⟨castP(x), castP(x)⟩.3After two evaluation steps

in the standard semantics, the program will be reduced to either ⟨castP(flipv(I)), castP(flipv(I))⟩ or
⟨castP(flipv(O)), castP(flipv(O))⟩, with equal probability. The standard rules for castP would then yield
(equally likely) ⟨bitvP(I), bitvP(I)⟩ and ⟨bitvP(O), bitvP(O)⟩. In the mixed semantics this program will
evaluate in two steps to ⟨castP(flipv(b̂)), castP(flipv(b̂))⟩ where b̂ is a distributional value. At this
point, the mixed semantics rule for castP uses monadic bind to sample b̂ to yield some b (which
is either I or O) and return it as a point distribution. The semantics needs to łrememberž the bit
chosen for the first castP so that when it samples the second, the same bit is returned. Sampling
independently would yield incorrect outcomes such as ⟨bitvP(O), bitvP(I)⟩.

Intensional distributions. As shown in the upper left of Figure 10, an intensional distribution
I(A) over a set A is a binary tree with elements a of A at the leaves. It represents a distribution as a
function from input entropyÐa sequence of coin flipsÐto a result in A. Each node ňx̂1 x̂2ŋ in the
tree represents two sets of worlds determined by the result of a coin flip: the left side x̂1 defines the
worlds in which the coin was heads, and the right side x̂2 defines those in which it was tails. Each
level of the tree represents a distinct coin flip, with the earliest coin flip at the root, and later coin
flips at lower levels. The height of a tree represents an upper bound on the number of coin flips
upon which a distribution’s values depends. Each path through the tree is a possible world.
For example, ňň3 4ŋ ň3 5ŋŋ is an intensional distribution of numbers in a scenario where two

coins have been flipped. There are four possible worlds. ň3 4ŋ is the world where the 0th coin came
up heads. 3 is the outcome in the world where both coins came up heads, while 4 is the outcome
where the 0th coin was heads but the 1th coin was tails. ň3 5ŋ is the world where the 0th coin came
up tails, with 3 the outcome when the 1th coin was heads, and 5 when it was tails.
We can derive the probabilities of particular outcomes by counting the number of paths that

reach them. In the example, 3 has probability 1
2 , while 4 has probability

1
4 , and 5 has probability

1
4 . Importantly, intensional distributions have enough structure to represent correlations: We can

3Although this program violates affinity and would be rejected for that reason by our type system, its runtime semantics is
well-defined and serves as a helpful demonstration.
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a ∈ A

x̂ ∈ I(A)F a | ňx̂ x̂ŋ

p ∈ rpathF · | H○ :: p | T○ :: p

[ ] ∈ I(A) × rpath⇀ A

a[p] ≜ a

ňx̂1 x̂2ŋ[ H○ :: p] ≜ x̂1[p]

ňx̂1 x̂2ŋ[ T○ :: p] ≜ x̂2[p]

support ∈ I(A) → ℘(A)

support(x̂) ≜ {a | x̂[p] = a}

π1 ∈ I(A) → I(A)

π1(a) ≜ a

π1(ňx̂1 x̂2ŋ) ≜ x̂1

π2 ∈ I(A) → I(A)

π2(a) ≜ a

π2(ňx̂1 x̂2ŋ) ≜ x̂2

Pr
[
x̂ Û= x

��� ŷ Û= y
]
≜

Pr
[
x̂ Û=x,ŷ Û=y

]

Pr
[
ŷ Û=y

]

height ∈ I(A) → N

height(a) ≜ 0
height(ňx̂1 x̂2ŋ) ≜ 1 +max(height(x̂1), height(x̂2))

length ∈ rpath→ B
length(·) ≜ 0
length( :: p) ≜ 1 + length(p)

bit ∈ N→ I(B)

bit(0) ≜ ňI Oŋ

bit(N + 1) ≜ ňbit(N ) bit(N )ŋ

return ∈ A→ I(A)

return(a) ≜ a

bind ∈ I(A) × (A→ I(B)) → I(B)

bind(a, f ) ≜ f (a)

bind(ňx̂1 x̂2ŋ, f ) ≜ ňbind(x̂1,π1◦f ) bind(x̂2,π2◦f )ŋ

Pr
[
x̂ Û= x

]
≜

���{p | length(p)=h, x̂ [p]=x }
���

2h

where h ≜ max(height(x̂))

Fig. 10. Intensional Distributions

see that we always get a 3 when the 1th coin flip is heads, regardless of whether the 0th coin flip
was heads or tails. Conversely, the distribution ňň3 3ŋ ň4 5ŋŋ ascribes outcomes 3, 4, and 5 the same
probabilities as ňň3 4ŋ ň3 5ŋŋ, but represents the situation in which the we always get 3 when 0th
coin flip is heads. An equivalent representation of ňň3 3ŋ ň4 5ŋŋ is ň3 ň4 5ŋŋ. Although the 3 only
appears once, it is logically extended to the larger sub-tree ň3 3ŋ for the purposes of counting. To
compute a probability, all paths are considered of a fixed length equal to the height of the tree, and
shorter sub-trees are extended to copy leaves that appear at shorter height. Trees are equal = when
they are syntactically equal modulo these extensions.

In the figure, a path p through the tree is a sequence of coin flip outcomes, either H○ or T○. The
operation x̂[p] follows a path p through the tree x̂ going left on H○ and right on T○. When a leaf a is
reached, it is simply returned, per the case a[p]; if p happens to not be ·, returning a is tantamount
to extending the tree logically, as mentioned above. Computing the probability of an outcome x for
intensional distribution x̂ is shown at the bottom of the figure. As with the example above, it counts
the number of paths that have outcome x , scaled by the total possible worlds. The probability of an
event involving multiple distributions is similar. Conditional probability works as usual.
Finally, looking at the middle right of the figure, consider the monadic operations used by the

semantics in Figure 9. The bit(N ) operation produces a uniform distribution of bits following the
N th coin flip, where the outcomes are entirely determined by the N th flip, i.e., independent of the
flips that preceded it, which appear higher in the tree. return(a) simply returns aÐthis corresponds
to a point distribution of a since it is the outcome in all possible worlds (recall a[p] = a for all p).
Lastly, bind(x̂ , f ) applies f to each possible world in x̂ , gathering up the results in an intensional
distribution tree that is of equal or greater height to that of x̂ ; the height could grow if f returns a
tree larger than x̂ , and bind(x̂ , f )[p] = f (x̂[p])[p] for all paths p.

Example revisited. Reconsider the example let x = flip
ρ () in ⟨castP(x), castP(x)⟩. According to the

mixed semantics starting with N = 0, flipρ () evaluates to flipv(ňI Oŋ), which is then (as precipitated
by nstep) substituted for x in the body of the let, producing ⟨castP(flipv(ňI Oŋ)), castP(flipv(ňI Oŋ))⟩.
Now we apply the context rule for E[e] where E is ⟨[], castP(flipv(ňI Oŋ))⟩ and e is castP(flipv(ňI Oŋ)).
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The rule invokes step on the latter, which performs do b ← ňI Oŋ ; return(σ , bitvP (return(b))) per
the rule for castP. Per the definitions of bind and return, this will return the intensional distribution
of configurations ň(σ , bitvP (I)) (σ , bitvP (O))ŋ. Back to the context rule, its use of bind will re-package
up these possibilities with E:

ň(σ , ⟨bitvP (I), castP(flipv(ňI Oŋ))⟩) (σ , ⟨bitvP (O), castP(flipv(ňI Oŋ))⟩)ŋ

In this distribution of configurations there are two worldsÐthe left configuration occurs when
the 0th coin flip is heads, and right when it is tails. Inside of each of these configurations is a
distributional value flipv(ňI Oŋ), where once again the left side is due to the coin flip being heads, and
the right side being tails. Both are relative to the same coin flip. As such, there are two łunreachablež
paths in the inner trees: the right-branch of the left distributional value, and the left branch of the
right distributional value, shown here with bullets:

ň(σ , ⟨bitvP (I), castP(flipv(ňI •ŋ))⟩) (σ , ⟨bitvP (O), castP(flipv(ň• Oŋ))⟩)ŋ

The next step of the computation will force the distributional value to be I in the left branch and O

in the right branch. Here’s how. First, the definition of nstep is a bind on the above distribution
of configurations with step as the function f passed to bind. The definition of bind constructs a
new distribution tree which calls step on the left configuration, and then takes the left branch
(π1) of the tree that comes back, and likewise for the right configuration and the right branch
that comes back (π2). Here step will invoke cast and context rules similarly as before, returning
a two-element tree with bitvP (I) on the left and bitvP (O) on the right. These occurrences of π1
and π2 łpickž the left (I case) and right (O case), respectively, resulting in the final configuration
ň(σ , ⟨bitvP (I), bitvP (I)⟩) (σ , ⟨bitvP (O), bitvP (O)⟩)ŋ

Simulation. The concept of łunreachablež paths in a distributional value is captured by a projec-
tion operation which łflattensž a distribution of mixed terms (which have distributional values)
into a distribution of standard terms (which do not have distributional values). This projection
will (1) discard unreachable paths of distributional values, and (2) corresponds to evaluation in the
standard semantics instantiated with the intensional distribution monad.
Projection is defined in Figure 11. The definition is a straightforward use of bind to recursively

flatten embedded distributional values. In our example, the projection of the mixed term before the
step shows what is left after discarding the unreachable distribution elements:

⌈̂ň(σ , ⟨bitvP (I), castP(flipv(ňI Oŋ))⟩) (σ , ⟨bitvP (O), castP(flipv(ňI Oŋ))⟩)ŋ⌉̂
= ň(σ , ⟨bitvP (I), castP(flipv(I))⟩) (σ , ⟨bitvP (O), castP(flipv(O))⟩)ŋ

and where the RHS corresponds exactly to the step of computation using the standard semantics.
We prove that the projected, mixed semantics simulates the standard semantics.

Lemma 4.2 (Simulation (Mixed)). If e is a source expression, then ⌈nstep(N ,�, e)⌉ = nstepI(N ,�, e).

To relate to łground truthž, we also prove that the standard semantics using intensional distribu-
tions I simulates the standard semantics using the denotational probability monad D.

Lemma 4.3 (Simulation (Intensional)). Pr
[
nstepI(N ,�, e) Û= t

]
= Pr

[
nstepD(N ,�, e) Û= t

]
.

4.5 Mixed Semantics Typing

Our type system aims to ensure that castP will produce I and O with equal probability, meaning
neither outcome leaks information. We establish this invariant in the PMTO proof as a consequence
of type preservation for mixed terms. The mixed term typing judgment extends typing of source-
program expressions (Figure 6) with some additional elements, and considers non-source values.

The judgment has the form Ψ,Φ, Σ ⊢ ς : τ ,Ψ, and is shown at the bottom of Figure 12. Here, Σ is
a store context, which maps store locations to types; it is used to type the store σ in rules Store-Cons
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⌈ ⌉ ∈ (exp→ I(exp)) × (store→ I(store)) × (config→ I(config)) × (trace→ I(trace))

⌈x⌉ ≜ return(x)
⌈locv(ι)⌉ ≜ return(locv(ι))
⌈bℓ⌉ ≜ return(bℓ)
⌈flipρ ()⌉ ≜ return(flipρ ())

⌈funy (x : τ ). e⌉ ≜ do e ← ⌈e⌉ ; return(funy (x : τ ). e)
⌈bitvℓ(b̂)⌉ ≜ do b ← b̂ ; return(bitvℓ(b))
⌈flipv(b̂)⌉ ≜ do b ← b̂ ; return(flipv(b))
⌈castℓ(v)⌉ ≜ do v ← ⌈v⌉ ; return(castℓ(v))

⌈mux(e1, e2, e3)⌉ ≜ do e1 ← ⌈e1⌉ ; e2 ← ⌈e2⌉ ; e3 ← ⌈e3⌉ ; return(mux(e1, e2, e3))
⌈xor(e1, e2)⌉ ≜ do e1 ← ⌈e1⌉ ; e2 ← ⌈e2⌉ ; return(xor(e1, e2))
⌈if(e1){e2}{e3}⌉ ≜ do e1 ← ⌈e1⌉ ; e2 ← ⌈e2⌉ ; e3 ← ⌈e3⌉ ; return(if(e1){e2}{e3})
⌈ref(e1)⌉ ≜ do e1 ← ⌈e1⌉ ; return(ref(e1))
⌈read(e1)⌉ ≜ do e1 ← ⌈e1⌉ ; return(read(e1))
⌈write(e1, e2)⌉ ≜ do e1 ← ⌈e1⌉ ; e2 ← ⌈e2⌉ ; return(write(e1, e2))
⌈⟨e1, e2⟩⌉ ≜ do e1 ← ⌈e1⌉ ; e2 ← ⌈e2⌉ ; return(⟨e1, e2⟩)
⌈let x = e1 in e2⌉ ≜ do e1 ← ⌈e1⌉ ; e2 ← ⌈e2⌉ ; return(let x = e1 in e2)

⌈let x ,y = e1 in e2⌉ ≜ do e1 ← ⌈e1⌉ ; e2 ← ⌈e2⌉ ; return(let x ,y = e1 in e2)

⌈e1(e2)⌉ ≜ do e1 ← ⌈e1⌉ ; e2 ← ⌈e2⌉ ; return(e1(e2))

⌈�⌉ ≜ return(�) ⌈{ι 7→ v} ⊎ σ ⌉ ≜ do v ← ⌈v⌉ ; σ ← ⌈σ ⌉ ; return({ι 7→ v} ⊎ σ )

⌈σ , e⌉ ≜ do σ ← σ ; e ← e ; return(σ , e) ⌈ϵ⌉ ≜ return(ϵ) ⌈t ·ς⌉ ≜ do t ← t ; ς ← ς ; return(t ·ς)

⌈̂t̂ ⌉̂ ≜ do t ← t̂ ; ⌈t⌉ ⌈̂ ⌉̂ ∈ I(trace) → I(trace)

Fig. 11. Mixed Semantics Projection

Ψ
F ∈flipset ≜ ℘(I(B)) Ψ

B∈bitset ≜ R→℘(I(B)) Ψ∈fbsetF Ψ
F ,ΨB

Φ∈historyF ς̂ Û= ς

(ΨF
1 ,Ψ

B
1 ) ⊎ (Ψ

F
2 ,Ψ

B
2 ) ≜ (Ψ

F
1 ⊎ Ψ

F
2 ), (Ψ

B
1 ∪ Ψ

B
2 )[

x̂ ⊥⊥ ŷ
��� ẑ Û= z

]
△
⇐⇒ ∀x ,y. Pr

[
x̂ Û= x , ŷ Û= y

��� ẑ Û= z
]
= Pr

[
x̂ Û= x

��� ẑ Û= z
]
Pr

[
ŷ Û= y

��� ẑ Û= z
]

Flip-Value

Pr
[
b̂ Û= I

��� Φ
]
= 1/2

[
b̂ ⊥⊥ Ψ

F ,ΨB ({ρ ′ | ρ ′ ⊏ ρ})
��� Φ

]

(ΨF ,ΨB ),Φ ⊢ b̂ : flipρ
Ψ,Φ ⊢ b̂ : flipρ

BitV-P

Ψ,Φ, Σ, Γ ⊢ bitvP (return(b)) : bit
⊥
P ; Γ,�,�

BitV-S

Ψ,Φ, Σ, Γ ⊢ bitvS (b̂) : bit
ρ
S
; Γ,�, {ρ 7→ {b̂}}

FlipV

Ψ,Φ ⊢ b̂ : flipρ

Ψ,Φ, Σ, Γ ⊢ flipv(b̂) : flipρ ; Γ, {b̂},�

LocV

Σ(ι) = τ

Ψ,Φ, Σ, Γ ⊢ locv(ι) : τ ; Γ,�,�

· · ·

Ref

Ψ,Φ, Σ, Γ ⊢ e : τ ; Γ′,Ψ′

Ψ,Φ, Σ, Γ ⊢ ref(e) : ref(τ ) ; Γ′,Ψ′

Tup

Ψ ⊎ Ψ2,Φ, Σ, Γ ⊢ e1 : τ1 ; Γ
′,Ψ1

Ψ ⊎ Ψ1,Φ, Σ, Γ
′ ⊢ e2 : τ2 ; Γ

′′,Ψ2

Ψ,Φ, Σ, Γ ⊢ ⟨e1, e2⟩ : τ1 × τ2 ; Γ
′′,Ψ1 ⊎ Ψ2

· · ·

Store-Empty

Ψ,Φ, Σ ⊢ � ; �,�

Store-Cons

Ψ ⊎ Ψσ ,Φ, Σ,� ⊢ v : Σ(ι) ; �,Ψv
Ψ ⊎ Ψv ,Φ, Σ,� ⊢ σ ; Ψσ

Ψ,Φ, Σ ⊢ {ι 7→ v} ⊎ σ ; Ψv ⊎ Ψσ
Ψ,Φ, Σ ⊢ σ ; Ψ

Config

Ψ ⊎ Ψe ,Φ, Σ ⊢ σ ; Ψσ Ψ ⊎ Ψσ ,Φ, Σ,� ⊢ e : τ ; �,Ψe

Ψ,Φ, Σ ⊢ σ , e : τ ; Ψσ ⊎ Ψe
Φ, Σ ⊢ ς : τ ,Ψ

Fig. 12. Mixed Semantics Typing
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and LocV as usual. Φ represents trace history which encodes the exact sequence of evaluation steps
taken to reach the present one. The type system reasons about the probability of distributional
values conditioned on this trace history having occurred. The Ψ is an fbset, which is a technical
device used to collect all distributional bit values b̂ that appear in ς . Per the top of the figure, the
fbset is a pair (ΨF ,ΨB ), where ΨF is a flipset containing those b̂ that appear inside of flip values,
and Ψ

B is a bitset containing those b̂ inside bit values. The latter is a map from a region ρ to a set
of bit values in that region. The Ψ to the right of the turnstile contains all of the flip and secret
bit values in the configuration itself, while the Ψ to the left of it captures those in the evaluation
context and store.

The expression typing judgment Ψ,Φ, Σ, Γ ⊢ e : τ ; Γ,Ψ is similar but includes variable contexts
Γ as in the source-program type rules. We can see secret bit values being added to Ψ

B in the
BitV-S rule, where Ψ

B is the singleton map from ρ, the region of the bit value, to {b̂}, while Ψ
F

is empty. Conversely, in the FlipV rule ΨB is empty while ΨF is the singleton set {b̂}. We can see
the maintenance of Ψ to the left of the turnstile in the Tup rule. Recursively typing the pair’s left
component e1 yields fbset Ψ1 to the right of the turnstile, which is used when typing e2, and vice
versa; the Store-Cons rule similarly handles the store and the expression. The rules combine two
fbsets using the ⊎ operator. Per the top of the figure, it acts as disjoint union for flipsets but normal
union for bitsets, mirroring the handling of affine and universal variables.
The key invariants ensured by typing are defined by the judgment Ψ,Φ ⊢ b̂ : flip

ρ , which is
invoked by expression-typing rule FlipV and defined in the Flip-Value rule. This judgment establishes
that in a configuration reached by an execution path Φ the flip value b̂ is uniformly distributed (first
premise), and that it can be typed at region ρ because it is properly independent of the other secret
bit values in smaller regions ΨB ({ρ ′ | ρ ′ ⊏ ρ}) and flip values ΨF (second premise). Conditional
independence is defined in the figure in the usual wayÐthe overbar notation represents some
sequence of random variables and/or condition events.
We prove a type preservation lemma to establish that these invariants are preserved.

Lemma 4.4 (Type Preservation). If e is a closed source expression, t ·ς ∈ support(nstep(N ,�, e)) and

⊢ e : τ , then there exists Σ and Ψ s.t. Φ, Σ ⊢ ς : τ ,Ψ where Φ ≜

[
nstep(N ,�, e) Û= t ·ς

]
.

When a configuration takes any number of steps, the resulting configuration is well-typed under
new trace history Φ. Updating Φ is not arbitraryÐit is necessary to satisfy a proof obligation as used
in a later lemma (PMTO (Mixed)). The new Σ and Ψ are new store typings (in case new references
were allocated), and the new fbset (in case flip values were either created or consumed). The proof
of preservation uses a sublemma which shows typesafe substitution; this lemma makes crucial use
of affinity to ensure that aggregated Ψ1 ⊎ Ψ2 in contexts for compound expressions (e.g., pairs) are
truly disjoint, which will be true only because the substitution is guaranteed to only occur in Ψ1,
Ψ2, or neither, but not both.
The key property established by type preservation is that flip values remain well-typed. Recall

that the first premise of Flip-ValueÐuniformityÐis crucial in establishing that it is safe to reveal the
flip via the castP coercion to a public bit. The second premise is crucial in re-establishing the first
premise after some other flip has been revealed. When another flip is revealed, this information
will be added to trace history, and it is not true that uniformity conditioned on the current history
Φ automatically implies uniformity in the new history Φ

′; this must be proved. Because the second
premise establishes independence from all other flips, we are able reestablish the first premise via
the second after some other flip is revealed to complete the proof.
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Note that we also prove a progress lemma to ensure that no well-typed evaluation reaches a
stuck state; along with preservation, this lemma establishes standard type soundness for λobliv
under the mixed semantics.

4.6 Proving PMTO

To prove PMTO (Proposition 4.1) we first prove a variant of it for the mixed semantics, and then
apply a few more lemmas to show that PMTO holds for the standard semantics too.

Lemma 4.5 (PMTO (Mixed)). If e1 and e2 are closed source expressions, ⊢ e1 : τ , ⊢ e2 : τ and e1 ∼ e2 ,

then (1) nstep(N ,�, e1) and nstep(N ,�, e2) are defined, and (2) nstep(N ,�, e1) ≈∼ nstep(N ,�, e2).

The judgment e1 ∼ e2 in the premise indicates that the two expressions are low equivalent,
meaning that the adversary cannot tell them apart. The definition of this judgment is basically
standard (given in the supplemental report [Darais et al. 2019]) and we can easily prove that it
is implied by obs(e1) = obs(e2) for source expressions. Mixed PMTO establishes equivalence of
the distributions of mixed configurations modulo low-equivalence. We define two distributions as
equivalent modulo an underlying equivalence relation as follows:

x̂1 ≈∼A x̂2
△

⇐⇒ ∀x .

(
∑

x ′ |x ′∼Ax

Pr [x̂1 Û= x ′]

)
=

(
∑

x ′ |x ′∼Ax

Pr [x̂2 Û= x ′]

)

This definition captures the idea that two distributions are equivalent when, for any equivalence
class within the relation (represented by element x), each distribution assigns equal mass to the
whole class. For Mixed PMTO, the relation ∼A is instantiated to low equivalence, which we write
just as ∼. When the underlying relation is equality, we recover the usual notion of distribution
equivalence: equality of probability mass functions.

We prove PMTO (Mixed) by induction over steps N and then unfolding the monadic definition of
nstep(N + 1). The induction appeals to a single-step PMTO sublemma. (As mentioned in Section 4.3,
such a proof would not have been possible in the standard semantics.) To use this one-step PMTO
sublemma, it must be that the configuration at N steps is well-typed w.r.t. current trace history Φ;
we get this well-typing w.r.t. Φ from Type Preservation, discussed earlier.

A final major lemma in our PMTO proof is a notion of soundness for low-equivalence on mixed
terms, in particular, that equivalence modulo ∼ for distributions of mixed traces implies equality of
adversary-observable traces in the standard semantics:

Lemma 4.6 (Low-eqivalence Soundness). If t̂1 ≈∼ t̂2 then ôbs(⌈̂t̂1⌉̂) ≈= ôbs(⌈̂t̂2⌉̂).

In this lemma we use a lifting of obs for intensional distributions, written ôbs; its definition is
identical to õbs in Figure 7 but with the intensional distribution monad I instead of D.
We now complete the full proof of PMTO. The general strategy is to first consider two well-

typed source programs which are equal modulo adversary observation. Next, these programs
are transported to the mixed language, where low-equivalence is established. The programs are
executed in the mixed semantics, and PMTO for mixed terms is applied, which appeals to type
preservation. Due to PMTO for mixed terms, the results will be low-equivalent, and via soundness
of low-equivalence, we conclude equality of distributions modulo adversary observation after
projection. The final steps are via simulation lemmas, showing that this final projection lines up
with executions of the initial programs in the standard semantics.
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Theorem 4.7 (PMTO).

If: e1 and e2 are closed source expressions, ⊢ e1 : τ , ⊢ e2 : τ and obs(e1) = obs(e2)
Then: (1) nstepD(N ,�, e1) and nstepD(N ,�, e2) are defined

And: (2) õbs(nstepD(N ,�, e1)) = õbs(nstepD(N ,�, e2)).

Proof.

(1) is by Progress (see supplemental report). (2) is by the following:
obs(e1) = obs(e2)

=⇒ e1 ∼ e2 N by simple induction O
=⇒ nstep(N ,�, e1) ≈∼ nstep(N ,�, e2) N by PMTO (Mixed) O

=⇒ ôbs(⌈̂nstepI(N ,�, e1)⌉̂) ≈= ôbs(⌈̂nstepI(N ,�, e2)⌉̂) N by Low-equivalence Soundness O

=⇒ ôbs(nstepI(N ,�, e1)) ≈= ôbs(nstepI(N ,�, e2)) N by Simulation (Mixed) O

=⇒ õbs(nstepD(N ,�, e1)) = õbs(nstepD(N ,�, e2)) N by Simulation (Intensional) O
□

A detailed proof is given in the supplemental report [Darais et al. 2019].

5 IMPLEMENTATION AND TREE-BASED ORAM CASE STUDY

We have implemented an interpreter and type checker for a language that extends λobliv in several
(straightforward) ways. First, we add natural number literals and random values; these can be
encoded in λobliv as fixed-width tuples of bitv and flipv respectively. We write them annotated with
a security level, e.g., 2 S or 2 P, and write rnd R () to generate a random number at region R. We
write natS to be the type of a secret number in region ⊥; natP for the type of a public number; R natS

for the type of a secret number in the region R. We also write R rnd to be the type of a random
natural number in the region R. Second, we add arrays; in our code examples, we write a[n] and
a[n] ← e to read and write array elements. An array of length N can be encoded in λobliv as an
N -tuple of references, using nested conditional expressions to access the correct (public) index and
swapping out affine contents, as must be done with references. Finally, we add records, which are
like tuples but permit field accessor notation, r . x; if x is affine, doing so only consumes the field x

rather than consuming all of r.
To demonstrate the expressiveness of λobliv, we have used our extended language to program (and

type check) a series of interesting oblivious algorithms. Section 5.2 presents a modern non-recursive,

tree-based ORAM (NORAM), which is a key component of state-of-the-art ORAM implementa-
tions [Shi et al. 2011; Stefanov et al. 2013; Wang et al. 2015]. To our knowledge, ours is the first
implementation automatically verified to be oblivious. Building on this NORAM, Section 5.3 presents
a full recursive ORAM. Type checking it requires some advanced (but standard) language features we
have not implemented, including region polymorphism, recursive and variant types, and existential
quantification. Finally, the supplemental report [Darais et al. 2019] presents a mostly complete im-
plementation of oblivious stacks (ostacks), a kind of oblivious data structure [Wang et al. 2014] that
builds on top of NORAM. The λobliv type system is not powerful enough to reason that ostacks’ use
of NORAM is safe; the region ordering requirement is too strong. Sections 6 and 7 discuss integrating
λobliv’s type system with a general-purpose logic as a way to potentially overcome this limitation.
Our type checker and all the examples are online at https://github.com/plum-umd/oblivml.

5.1 Tree-based ORAM: Overview

A complete ORAM implements the same API as a standard array: A read operation takes an ORAM
oram and index i as arguments, and returns data d stored at that index; a write operation updates
oram at i with a given d. We assume that the ORAM contents and the indexes are not visible to the
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adversary (i.e., they are encrypted). A simple implementation is a Trivial ORAM. It consists of an
array of N łbuckets,ž each of which consists of an index i and data d. A read at index j iterates over
the entire array and retrieves the data associated with j , if present. The data is returned when the
iteration is complete (or a default value is returned, if j is not present). Since each read touches
every bucket, nothing is leaked about i . Of course, this is very inefficientÐthe read takes timeO(N )
where N is the size of the array. (The code example in Figure 1(b) does something similar.)

A tree-based ORAM [Shi et al. 2011; Stefanov et al. 2013; Wang et al. 2015] offers better per-
formance. It breaks its implementation into two parts. The first is a tree-like structure noram for
storing the actual data blocks; this is called a non-recursive ORAM (or NORAM) for reasons that
will be clear in the next subsection. The second part is the position map pm that maps logical data
block indexes to position tags that indicate the block’s position in the tree.

NORAMs do not implement read and write operations directly; instead they implement two more-
primitive operations called noram_readAndRemove (or noram_rr, for short) and noram_add. The former
reads the designated data block from noram and also removes it, while the latter adds the given
data. Putting it all together, a Tree ORAM read from index i works in four steps: (1) retrieve tag t

from pm[i]; (2) call noram_rr noram i t to remove the data d at i using t to assist the lookup; (3) update
pm[i] with a randomly generated tag t2; and (4) call noram_add noram i t2 d to add back data d, but with
the new tag, before returning it. An ORAM write has the same four steps, but in step (4) we add
the provided data, rather than the original. (A fifth step in both cases, eviction, will be explained
later.) As with the example in Figure 1(c), non-recursive ORAM combines randomness (and its
tree structure) to avoid having O(N ) cost for the entire map: Under the right assumptions, these
operations take time O(log(N )).
The position tags mask the relationship between a logical index and the location of its corre-

sponding data block in the tree. As blocks are read and written, they are shuffled around in the tree,
and their new locations are recorded in the position map. As such, two ORAM read operations to
the same index i will involve different access patterns in a way that leaks nothing about the index
assuming lookups and updates to the position map itself leak no information. This assumption
could be satisfied by making the position map a Trivial ORAM, but then we would lose our perfor-
mance benefits. In the next subsection we simply assume we have a leak-free position map and in
Section 5.3 we show how one can be obtained by efficiently storing the position map recursively in
the NORAM tree structure itself.

5.2 Tree-based Non-recursive ORAM

Now we present the details of our implementation of tree-based NORAM in λobliv.

Data definition. The type of a tree-based NORAM is defined as follows:

type block = { is_dummy : R bitS ; idx : R natS ; tag : R natS ; data : (R ∨ R' rnd) ∗ (R ∨ R' rnd) }
type bucket = block array
type noram = bucket array

A noram is an array of 2N − 1 buckets which represents a complete tree in the style of a heap data
structure: for the node at index i ∈ {0, ..., 2N − 2}, its parents, left child, and right child correspond
to the nodes at index (i − 1)/2, 2i + 1, and 2i + 2, respectively. Each bucket is an array of blocks, each
of which is a record where the data field contains the data stored in that bucket. The other three
components of the block are secret; they are (1) the is_dummy bit indicating if the block is dummy
(empty) or not; (2) the index (idx) of the block; and (3) the position tag of the block. Note that the
bucket type, ignoring the position tag, is essentially a Trivial ORAM. In the operations discussed
below, all functions prefixed with trivial are operations over buckets.
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The region R ∨ R' should be read as łR join R'ž and corresponds to the join operation, ⊔, over
regions ρ in Section 3. Notice that we have R ⊏ R ∨ R', which will be important when discussing
well-typedness of mux in the discussion that follows. We choose type (R ∨ R' rnd) ∗ (R ∨ R' rnd) for
the data portion to illustrate that affine values can be stored in the NORAM, and to set up our
implementation of full, recursive ORAM, next.

Operations. The code for noram_rr is given below; we explain it just afterward.

1 let rec trivial_rr_h (troram : bucket) ( idx : R natS) ( i : natP) (acc : block) : block =
2 if i = length(troram) then acc
3 else
4 (∗ read out the current block , replace with dummy ∗)
5 let curr = bucket[ i ] ← (dummy_block ()) in
6 (∗ check if the current block is non−dummy, and its index matches the queried one ∗)
7 let swap : R bitS = ! curr . is_dummy && curr.idx = idx in
8 let ( curr , acc) = mux(swap, acc, curr ) in
9 (∗ when swap is false , this equivalent to writing the data back ; otherwise , acc
10 stores the found block and is passed into the next iteration ∗)
11 let _ = bucket[ i ] ← curr in
12 trivial_rr_h troram idx ( i + 1) acc
13

14 let trivial_rr (troram : bucket) ( idx : R natS) : (R ∨ R' rnd) ∗ (R ∨ R' rnd) =
15 let ret : block = trivial_rr_h troram idx 0 (dummy_block ()) in
16 ret .data
17

18 let rec noram_rr_h (noram : noram) (idx : R natS) (tag : natP) ( level : natP) (acc : block) : block =
19 (∗ compute the first index into the bucket array at depth level ∗)
20 let base : natP = (pow 2 level ) − 1 in
21 if base >= length(noram) then acc
22 else
23 let bucket_loc : natP = base + (tag & base) in (∗ the bucket on the path to access ∗)
24 let bucket = noram[bucket_loc] in
25 let acc = trivial_rr_h bucket idx 0 acc in
26 noram_rr_h noram idx tag ( level + 1) acc
27

28 let noram_rr (noram : noram) (idx : R natS) (tag : natP) : (R ∨ R' rnd) ∗ (R ∨ R' rnd) =
29 let ret = noram_rr_h noram idx tag 0 (dummy_block ()) in
30 ret .data

noram_rr takes the NORAM noram and the index idx of the desired element as arguments. The tag

argument is the position tag, which identifies a path through the noram binary tree along which the
indexed value will be stored, if present. This tag’s type natP means it is publicly visible. Initially it is
stored, secretly, in the position map, but prior to passing it to this function it must be revealed (via
castP) because it (or derivatives of it) will be used to index the arrays that make up the NORAM,
and array indexes are always adversary-visible.

noram_rr works by calling noram_rr_h which recursively works its way down the identified path.
It maintains an accumulator, acc : block, over the course of the traversal. Initially, acc is a dummy
block. The dummy_block () is a function call rather than a constant because the block record contains
data: (R ∨ R' rnd) ∗ (R ∨ R' rnd). This member of the record must be generated fresh for each new
block, since its contents are treated affinely. Each recursive call to noram_rr_h moves to a node the
next level down in the tree, as determined by the tag. At each node, it reads out the bucket array,
which as mentioned earlier is essentially a Trivial ORAM. The trivial_rr function calls trivial_rr_h

to iterate through the entire bucket, to obliviously read out the desired block, if present.
Notice that we are using arrays with both affine and non-affine (universal) contents in this code.

The noram type has contents which are kind U, since the type of its contents is an array. As such, we
can read from noram without writing a new value (line 24). However, the bucket type has contents
which are kind A, since the type of its contents are tuples which contain type R ∨ R' rnd. So, when
we index into members of values of type bucket we must write a dummy block (line 5).
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This algorithm for noram_rr will access logN buckets (where N is the number of buckets in the
noram), and each bucket access causes a trivial_rr which takes time b where b is the size of each
bucket. Therefore, the noram_rr operation above takes timeO(b logN ). In the state-of-the-art ORAM
constructions, such as Circuit ORAM [Wang et al. 2015], b can be parameterized as a constant (e.g.,
4), which renders the overall time complexity of noram_rr to be O(logN ). This is asymptotically
faster than implementing the entire ORAM as a Trivial ORAM, which takes time O(N ).

The noram_add routine has the following signature:

val noram_add : noram→ (idx : R natS) → (tag : R natS) → (data : (R ∨ R' rnd) ∗ (R ∨ R' rnd)) → unit

Like the noram_rr operation, it takes an index and a position tag, but here the position tag is secret,
since it will not be examined by the algorithm. In particular, noram_add simply stores a block
consisting of the dummy bit, index, position tag, and data into the root bucket of the noram. It does
this as a Trivial ORAM operation: It iterates down the root bucket’s array similarly to trivial_rr

above, but stores the new block in the first available slot.
To avoid overflowing the root’s bucket due to repeated noram_adds, our NORAM employs an

additional eviction routine. It is called after both noram_add and noram_rr, to move blocks closer to
the leaf buckets. This routine maintains the key invariant that each data block should reside on
the path from the root to the leaf corresponding to its position tag. Different tree-based ORAM
implementations differ only in their choices of b and the eviction strategies. The simple eviction
strategy we implement (due to Shi et al. [2011]) picks two random nodes at each level of the tree,
reads a single non-empty block from each chosen node’s bucket, and then writes that block one
level further down either to the left or right according to the position tag; a dummy block is written
in the opposite direction to make the operation oblivious.

5.3 Recursive ORAM

As described in Section 5.1, a complete ORAM combines a non-recursive ORAM with a position
map. So far, we have not said where the position map should be stored, and how. One approach
is to implement it as just a regular array stored in hidden memory, e.g., on-chip (invisible to the
adversary) in a secure processor deployment of ORAM (see Section 2.1). However, this is not
possible for MPC-based deployments, in which both parties secret-share the map, and thus the
adversary can observe the access pattern on the map itself. To block this side channel, we could
implement the position map itself as an ORAM, e.g., a Trivial ORAM. But to do so would ruin the
efficiency gain of our tree-based NORAM, since the position map lookup would have timeO(N ), as
compared to O(log(N )) time for noram_rr and noram_add.

We could implement the position map in a NORAM in an attempt to get back logarithmic-time
efficiency, but doing so seems to łkick the can down the roadž because we now need another
position map for our position map! We can close this cycle by having each recursively defined
position map be smaller than the previous. In particular, to implement a map with N integer keys
we can use a map of N /c keys, each of which maps to c values, for a small constant c . Lookup of key
k translates to looking up key k/c in the smaller map, and then returning the (k%c)th value (which
takes time c to do obliviously). We can apply this idea recursively, ultimately yielding logc (N )
maps numbered i = 1... logc (N ), where map i has N

c i
keys (and each key maps to c values). We can

implement each map at level i as a NORAM until i is large enough that we can use a Trivial ORAM to

tie it off (e.g., when N
c i

is 4). The complexity of looking up a key will thus be
∑logc (N )

i=1 O(log(N
c i
)+ c).

Setting c to be a constant 2 means that the complexity of the lookup procedure is O(log(N )2). This
construction is called a recursive ORAM.

Data Definition and Operations. A recursive ORAM thus has the type oram, given below.
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type oram = (noram array) ∗ bucket

The data blocks are stored in the noram at index 0 in the first component, an noram array; the remaining
norams in that array consist of progressively smaller position maps, finally ending in a trival ORAM,
the second component (a bucket).

We implement the tree_rr as a call to the function tree_rr_h , which takes an additional public level

argument, to indicate at which point in the list of orams to start its work (initially, 0).

1 let rec tree_rr_h (oram : oram) ( idx : natS) ( level : natP) : (R ∨ R' rnd) ∗ (R ∨ R' rnd) =
2 let (norams, troram) = oram in
3 let levels : natP = length(norams) in
4 if level >= levels then trivial_rr troram idx
5 else
6 let ( r0 , r1 ) : (R ∨ R' rnd) ∗ (R ∨ R' rnd) = tree_rr_h oram (idx / 2) ( level + 1) in
7 let ( r0 ', tag) = mux(idx % 2 = 0, rnd (R ∨ R ') () , r0 ) in
8 let ( r1 ', tag) = mux(idx % 2 = 1, tag , r1 ) in
9 let _ = tree_add_h oram (idx / 2) ( level + 1) ( r0 ', r1 ') in
10 noram_rr norams[level] idx (castP tag)
11

12 let tree_rr (oram : oram) ( idx : natS) : (R ∨ R' rnd) ∗ (R ∨ R' rnd) =
13 tree_rr_h oram idx 0

In the code above, the level indicates the embedded NORAM from which to read. For example,
when level is 0, the data NORAM should be read. For any other level > 0, the NORAM will be one
of the embedded position maps. Recall that each NORAM at level i has its position map at level
i + 1, with the exception of the very last NORAM which uses a Trivial ORAM for its position map.
The recursive call to tree_rr_h on line 6 reads out of the next level’s map, returning the pair ( r0 , r1 ).
These are the two possible position tags for nrorams[level ]Ðwe should return r0 if idx % 2 = 0 and r1

if idx % 2 = 1. The muxes on lines 7 and 8 obliviously achieve this, reading the proper result into
tag, replacing it with a freshly generated tag, to satisfy the affinity requirement. Line 9 writes the
updated block ( r0 ', r1 ') for idx / 2 back, using an analogous tree_add_h routine, for which a level can
be specified. Finally, line 10 reveals the retrieved position tag for index idx, so that it can be passed
to noram_rr. Since level 0 corresponds to the actual data of the ORAM, that is what will finally be
returned to the client.
The tree_add routine is similar so we do not show it all. As with tree_rr it recursively adds the

corresponding bits of the position tag into the array of norams. At each level of the recursion there
is a snippet like the following:

1 let new_tag : R ∨ R' rnd = rnd R ∨ R' () in
2 let sec_tag = castS new_tag in (∗ does NOT consume new_tag ∗)
3 let ( r0 , r1 ) : (R ∨ R' rnd) ∗ (R ∨ R' rnd) = tree_rr_h oram (idx / 2) ( level + 1) in
4 let r0 ', tag = mux (idx % 2 = 0, new_tag, r0 ) in (∗ replaces with new tag ∗)
5 let r1 ', tag = mux (idx % 2 = 1, tag , r1 ) in
6 let _ = tree_add_h oram (idx / 2) ( level + 1) ( r0 ', r1 ') in
7 noram_add norams[level] idx sec_tag data (∗ adds to Tree ORAM ∗)

Lines 1 and 2 generate a new tag, and make a secret copy of it. The new tag is then stored in the
recursive ORAMÐlines 3ś5 are similar to tree_add_h but replace the found tag with new_tag, not
some garbage value, at the appropriate level of the position map (line 6). Finally, sec_tag is used to
store the data in the appropriate level of the noram.

We note that neither tree_rr nor tree_add are complete ORAM operations on their own: to imple-
ment a full ORAM read, for example, we would need to call tree_rr with a call to tree_add.

Discussion. Unfortunately (as astute readers may have noticed), the code snippet for add will not
type check. In particular, the sec_tag argument has type R ∨ R' natS but noram_add requires it to have
type R natS. This is because the position tags for the noram at level are stored as the data of the noram

at level + 1, and these are in different regions. We cannot put them in the same region because we
require a single noram’s metadata to have a strictly smaller region than its data (i.e., R ⊏ R ∨ R').
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We can solve this problem by extending the language to support variant and recursive types,
existential quantification, and region polymorphism, where region-polymorphic variables may have
ordering constraints. With these changes, the type of oram would be the following:

type (R1,R2) block = { is_dummy : R1 bitS ; idx : R1 natS ; tag : R1 natS ; data: (R2 rnd) ∗ (R2 rnd) }
where R1 ⊏ R2

type (R1,R2) bucket = (R1,R2) block array
type (R1,R2) noram = (R1,R2) bucket array
type (R1, R2) oram =
Trivial of (R1,R2) bucket

| Recursive of ∃R. (R, R1) noram ∗ (R1,R2) oram where R1 ⊏ R2

We re-present the definitions for the elements of noram, which we now parameterize with poly-
morphic region variables. For block, we add the constraint that R1 ⊏ R2. When originally presenting
NORAM, this wasn’t needed because we were using concrete regionsÐnotice that R and R ∨ R' from
our previous noram definition satisfy the constraint on R1 and R2, respectively, in the new definition.
Type oram is also parameterized by region variables, and is now a recursive variant: it can be either
a trivial ORAM or a recursive ORAM. The latter is an NORAM paired with an ORAM, which acts
as its position map. Importantly, the region R2 of the ORAM data is properly ordered with the
region of the position map R1. The code would be roughly the same as the code given above, except
that rather than indexing the norams array at each recursive level , it simply recurses down the oram

datastructure. Constructing such a datastructure would require satisfying the region constraints
at each level, which is easy to do by simply using distinct regions for each region variable. Along
with our other code examples at https://github.com/plum-umd/oblivml, we show how this could
work using OCaml-style functors.

Oblivious Stacks. Other oblivious data structures [Wang et al. 2014] can be built in λobliv, and on
top of noram in particular. The supplemental report presents a development of probabilistic oblivious
stacks (ostacks). As explained there, the strict ordering of probability regions imposes a similar
problem on ostacks as on recursive ORAMs, but for ostacks the problem cannot be addressed
with straightforward language extensions. Instead, different reasoning principles are required. It’s
possible these can be integrated into λobliv via inclusion of a general-purpose logic.

6 RELATED WORK

Lampson first pointed out various covert, or łside,ž channels of information leakage during a
program’s execution [Lampson 1973]. Defending against side-channel leakage is challenging.
Previous works have attempted to thwart such leakage from various angles: processor architectures
thatmitigate leakage through timing [Kocher et al. 2004; Liu et al. 2012], power consumption [Kocher
et al. 2004], or memory-traces [Fletcher et al. 2014; Liu et al. 2015a; Maas et al. 2013; Ren et al.
2013]; program analysis techniques that formally ensure that a program has bounded or no leakage
through instruction traces [Molnar et al. 2006], timing channels [Agat 2000; Molnar et al. 2006;
Russo et al. 2006; Zhang et al. 2012, 2015], or memory traces [Liu et al. 2015a, 2013, 2014]; algorithmic
techniques that transform programs and algorithms to their side-channel-mitigating or side-channel-
free counterparts while introducing only mild costsÐe.g., works on mitigating timing channel
leakage [Askarov et al. 2010; Barthe et al. 2010; Zhang et al. 2011], and on preventing memory-trace
leakage [Blanton et al. 2013; Chan et al. 2019; Eppstein et al. 2010; Goldreich 1987; Goldreich and
Ostrovsky 1996; Goodrich et al. 2012; Shi et al. 2011; Stefanov et al. 2013; Wang et al. 2015, 2014;
Zahur and Evans 2013]. Often, the most effective and efficient is through a comprehensive co-design
approach combining these areas of advancesÐin fact, several aforementioned works indeed combine
(a subset of) algorithms, architecture, and programming language techniques [Fletcher et al. 2014;
Liu et al. 2015a; Ren et al. 2013; Zhang et al. 2012, 2015].
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Our work belongs to a large category of work that aims to statically enforce noninterference,
e.g., by typing [Sabelfeld and Myers 2006; Volpano et al. 1996]. Liu et al. [2015a, 2013, 2014]
developed a type system that ensures programs are MTO, generalizing a line of prior works
on (language-enforced) timing channel security [Agat 2000], program counter security [Molnar
et al. 2006]. In Liu et al’s work, types are extended to indicate where values are allocated; as per
our above example data can be public or secret, but can also reside in ORAM. Trace events are
extended to model ORAM accesses as opaque to the adversary (similar to the Dolev-Yao modeling
of encrypted messages [Dolev and Yao 1981]): the adversary knows that an access occurred, but
not the address or whether it was a read or a write. Liu et al’s type system enforces obliviousness
of deterministic programs that use (assumed-to-be-correct) ORAM. λobliv’s key advance is that it
applies to probabilistic programs. It need not assume the existence of ORAM as a primitive; rather,
λobliv’s probabilistic nature is sufficient to allow us to program ORAM, per Section 5. Thus we
can express state-of-the-art algorithmic results and formally reason about the security of their
implementations, building a bridge between algorithmic and programming language techniques.
ObliVM [Liu et al. 2015b] is a language for programming probabilistically oblivious algorithms

intended to be run as secure multiparty computations [Yao 1986]. Its type system also employs
affine types to ensure random numbers are used at most once. However, it provides no mechanism
to disallow constructing a non-uniformly distributed random number. When such random numbers
are generated, they can be distinguished by an attacker from uniformly distributed random numbers
when being revealed. Therefore, the type system in ObliVM does not guarantee obliviousness.
λobliv’s use of probability regions enforces that all random numbers are uniformly random, and
thus eliminates this channel of information leakage. Moreover, we prove that this mechanism (and
the others in λobliv) are sufficient to prove PMTO.

Our probabilistic memory trace obliviousness property bears some resemblance to probabilistic
notions of noninterference. Much prior work [Ngo et al. 2014; Russo and Sabelfeld 2006; Sabelfeld
and Sands 2000; Smith 2003] is concerned with how random choices made by a thread scheduler
could cause the distribution of visible events to differ due to the values of secrets. Here, the source
of nondeterminism is the (external) scheduler, rather than the program itself, as in our case. Smith
and Alpízar [2006, 2007] consider how the influence of random numbers may affect the likelihood
of certain outcomes, mostly being concerned with termination channels. Their programming model
is not as rich as ours, as a secret random number is never permitted to be made public; such an
ability is the main source of complexity in λobliv, and is crucial for supporting oblivious algorithms.

Some prior work aims to quantify the information released by a (possibly randomized) program
(e.g., Köpf and Rybalchenko [2013]; Mu and Clark [2009]) according to entropy-based measures.
Work on verifying the correctness of differentially private algorithms [Barthe et al. 2013; Zhang
and Kifer 2017; Zhang et al. 2019b], essentially aims to bound possible leakage; by contrast, we
enforce that no information leaks due to a program’s execution.

Our intensional distributionsÐwhile a novel syntactic device instrumental to our proof approachÐ
are readily interpretable as measurable sets over infinite streams of bits, and there is prior work
which has considered such models such as Kozen’s seminal treatment [Kozen 1979] among oth-
ers [Barker 2016; Huang and Morrisett 2016; Park et al. 2008; Ramsey and Pfeffer 2002b; Ścibior et al.
2015]. A novelty in our model is support for conditional probabilistic reasoning. This reasoning
is enabled by our interpretation of monadic bind as conditioning on outcomes, and performing
sampling of new bits via operations external to monad operations; doing so is in contrast to prior
work which interprets monadic bind directly as (effectively) sampling new random bits.

There is a rich history for reasoning about probabilistic programs [Sato et al. 2019], in particular
relational properties [Barthe et al. 2014, 2017b; Hsu 2017] and program logics [Barthe et al. 2018;
Rand and Zdancewic 2015], including trace properties [Smith et al. 2019], privacy properties [Barthe
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et al. 2015; Gaboardi et al. 2013; Reed and Pierce 2010], obliviousness properties [Ohrimenko et al.
2016], and uniformity and independence [Barthe et al. 2017a]. Much of this work is focused on
verification techniques for some program of interest, and not on proof techniques for establishing
metatheoric properties of entire languages (e.g., via a type system).
Perhaps the most closely related program logic to our setting is Probabilistic Separation Logic

(PSL) [Barthe et al. 2020]. PSL is a variant of separation logic in which separating conjunction
models probabilistic independence. It supports reasoning about (conditional) independence and
uniformity, which are both also key ideas in λobliv. There is a similar connection between some
of PSL’s proof rules and λobliv’s type rules; e.g., λobliv’s Mux-Flip rule and PSL’s RCond rule both
reason about conditional independence. It would be interesting to explore how to embed λobliv’s
type system in PSL’s logic, which might simplify reasoning about security for PSL, and open up
reasoning about correctness for λobliv programs. It might also permit proofs of uniformity that
λobliv’s strict region ordering currently forbid. How to combine these two is not obvious, though,
as PSL works on an imperative łwhilež language with a fixed set of (global) variables, while λobliv
is functional, and supports dynamically-sized data structures. Interesting future work!

7 CONCLUSIONS

This paper has presented λobliv, a core language suitable for expressing computations whose
execution should be oblivious to a powerful adversary who can observe an execution’s trace of
instructions and memory accesses, but not see private values. Unlike prior formalisms, λobliv can be
used to express probabilistic algorithms whose security depends crucially on the use of randomness.
To do so, λobliv tracks the use of randomly generated numbers via a substructural (affine) type
system, and employs a novel concept called probability regions. The latter are used to track a random
number’s probabilistic (in)dependence on other random numbers. We have proved that together
these mechanisms ensure that a random number’s revelation in the visible trace does not perturb
the distribution of possible events so as to make secrets more likely. We have demonstrated that
λobliv’s type system is powerful enough to accept sophisticated algorithms, including forms of
oblivious RAMs. To the best of our knowledge, by type checking an implementation of tree-based
ORAM in λobliv we have carried out the first automated proof that this algorithm is secure.
While λobliv advances the state of the art in security type systems, there are still oblivious

algorithms it is not powerful enough to check. As noted at the end of Section 5 (and the supplemental
report), the strict ordering on probability regions is sound but cannot handle some idioms. More
precise reasoning about probabilities is needed. We believe that a promising way forward is to
integrate λobliv’s type-level mechanisms with richer systems for formal reasoning. For example, we
could adopt the approach of semantic typing, embedding λobliv’s type rules as lemmas in a richer
logic, as done in RustBelt [Jung et al. 2018] or Fuzzi [Zhang et al. 2019b]. The logic of Barthe et al.
[2020] is a good candidate, but it needs further extensions too. Another benefit of embedding λobliv’s
type system into a full logic is that we can use the logic to reason about algorithm correctness,
something λobliv does not do.
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