
JFP 22 (2): 181–216, 2012. c© Cambridge University Press 2012

doi:10.1017/S0956796812000093
181

Macros that Work Together
Compile-time bindings, partial expansion, and definition contexts

M A T T H E W F L A T T, R Y A N C U L P E P P E R, D A V I D D A R A I S
University of Utah

(e-mail:)mflatt@cs.utah.edu, ryan@cs.utah.edu, david.darais@gmail.com)

R O B E R T B R U C E F I N D L E R
Northwestern University

(e-mail:)robby@eecs.northwestern.edu)

Abstract

Racket is a large language that is built mostly within itself. Unlike the usual approach taken by
non-Lisp languages, the self-hosting of Racket is not a matter of bootstrapping one implementation
through a previous implementation, but instead a matter of building a tower of languages and libraries
via macros. The upper layers of the tower include a class system, a component system, pedagogic
variants of Scheme, a statically typed dialect of Scheme, and more. The demands of this language-
construction effort require a macro system that is substantially more expressive than previous macro
systems. In particular, while conventional Scheme macro systems handle stand-alone syntactic forms
adequately, they provide weak support for macros that share information or macros that use existing
syntactic forms in new contexts. This paper describes and models features of the Racket macro
system, including support for general compile-time bindings, sub-form expansion and analysis, and
environment management. The presentation assumes a basic familiarity with Lisp-style macros, and
it takes for granted the need for macros that respect lexical scope. The model, however, strips away
the pattern and template system that is normally associated with Scheme macros, isolating a core that
is simpler, can support pattern and template forms themselves as macros, and generalizes naturally
to Racket’s other extensions.

1 Macros as a compiler-extension API

The progression from text pre-processors (such as the C pre-processor) to Lisp macros to
Scheme macros is an evolution toward a wider compiler API – one that, at the Scheme end,
exposes the compiler’s management of lexical context. This widening of the API makes
certain language extensions possible that were technically impossible before, such as a
local transformer that reliably expands to a reference of an enclosing binding.

The classic example of a scope-respecting macro is or, which (in simplified form) takes
two expressions. It returns the value of the first expression if it is not #f (i.e., false) or the
value of the second expression otherwise:

(or e1 e2) ⇒ (let ([tmp e1]) (if tmp tmp e2))



182 M. Flatt et al.

The tmp binding in the expansion of or ensures that the first expression is evaluated only
once. A Scheme macro system ensures that the or macro works as expected in a setting
like this expression:

(let ([tmp 5]) (or #f tmp))

An expansion oblivious to scope would allow the or-introduced tmp binding to shadow
the outer binding of tmp; the program would then produce #f (false) instead of 5. In-
stead, Scheme’s hygienic macro expander (Kohlbecker et al., 1986) preserves the orig-
inal apparent binding structure, and the or-introduced tmp does not shadow the outer
tmp.

Although Scheme is best known for its pattern-matching macros (Kohlbecker & Wand,
1987; Clinger & Rees, 1991), the crucial addition in Scheme’s macro API compared to Lisp
is the syntax object data-type (Dybvig et al., 1993; Sperber, 2009), along with an operator
for quoting literal program fragments. A syntax object represents a program fragment and
carries with it information needed to respect lexical scope. The #’ quoting operator is like
the ’ operator, but #’ produces a syntax object that encapsulates the program fragment’s
lexical context – the bindings in scope where the quoted fragment occurs. For example, the
syntax object produced by

(let ([x 1]) #’x)

records that the program fragment #’x occurred in the context of a particular binding of
x. A syntax object’s lexical context can be inspected through functions such as free-
identifier=?, which determines whether two syntax objects correspond to identifiers
that are bound in the same place:

> (let ([x 1]) (free-identifier=? #’x #’x))
#t
> (free-identifier=? (let ([x 1]) #’x)

(let ([x 1]) #’x))
#f

Functions like free-identifier=? are typically used within procedural macros,
which are bound with define-syntax and can be arbitrary functions that transform
a source syntax object into a new syntax object.

Racket builds on procedural macros and syntax objects while further expanding the
compiler functionality that is available through macros. The Racket macro API exposes
the compiler’s general capability to bind and access compile-time information within a
lexical scope, as well as the compiler’s ability to expand a sub-expression’s macros. This
wider macro API enables language extensions that were technically impossible (or, at
best, awkward to simulate) in the narrower macro API of earlier Scheme systems. Such
extensions can be generally characterized as macros that cooperate by sharing compile-
time information, and we describe several examples in Section 2.

Section 3, which is the bulk of the paper, presents a model of Racket macros. The full
model is about three pages long. For its presentation, we build up the model in a way that



Macros that work together 183

imitates the historical evolution of macro systems. We start with a core language and basic
parsing rules, then add scope-oblivious macros, next add tracking of lexical scope within
syntax objects, and finally add support for sub-form expansion and definition contexts.

2 Cooperating macros

Macros in Racket cooperate with each other in many different ways, including the way that
define-struct provides information for the match form, the way that the class
form leverages define and lambda, and the way that lambda propagates information
about definitions within its body to later definitions. These uses illustrate key tools for
cooperation: compile-time bindings, sub-form expansion (both complete and partial), and
definition contexts.

2.1 Structure definition and matching

Whereas Scheme has just one notion of compile-time information, the macro, Racket sup-
ports the binding of identifiers to arbitrary compile-time information. One such example is
structure information, which is how define-struct communicates information about
the shape of a structure declaration to the match pattern-matching form.

The define-struct form expands to a set of run-time definitions using define,
plus a single compile-time binding using define-syntax. For example,

(define-struct egg (color size))

expands to the following definitions:

(define (make-egg c s) ....) ; Primitive egg constructor
(define (egg? v) ....) ; Predicate to distinguish eggs
(define (egg-color e) ....) ; Accessor for the color field
(define (egg-size e) ....) ; Accessor for the size field
(define-syntax egg ; Static information about eggs
(make-struct-desc #’make-egg #’egg? ....))

The make-egg function is a constructor, the egg? function is a predicate, the egg-
color function is a selector, and so on. The egg binding, meanwhile, associates a static
description of the structure type – including references to its constructor, predicate, and
selector functions – with the name egg for use in other macros. In general, the use of
define-syntax does not always create a macro. If the value bound to the identifier
introduced by define-syntax is a function, then the macro expander knows to call
that function when it sees the identifier, but if the identifier is bound to something else,
then using the identifier results in a syntax error.

Cooperating macros can, however, use the syntax-local-value function to extract
the value bound to the identifier. In particular, the match pattern-matching form recog-
nizes bindings to structure definitions using syntax-local-value, and it generates
code that uses the predicate and selector functions. For example,



184 M. Flatt et al.

(define (blue-egg-size v)
(match v
[(egg ’blue s) s]))

expands to roughly

(define (blue-egg-size v)
(if (and (egg? v) (eq? (egg-color v) ’blue))

(egg-size s)
(error "match: no matching case")))

The implementation of match uses syntax-local-value on the egg identifier to
learn about its expected number of fields, its predicate, and its selector functions.

Using define-syntax for both macros and other compile-time bindings allows a sin-
gle identifier to play multiple roles. For example, make-struct-desc in the expansion
of Racket’s define-struct macro produces a value that is both a structure description
and a function.1 Since the descriptor is also a function, it can act as a macro transformer
when egg is used as an expression. The function behavior of a structure descriptor is to
return the identifier of structure’s constructor, which means that egg as an expression is
replaced by the make-egg constructor, that is (egg ’blue 1) expands to (make-egg
’blue 1). Overloading the egg binding in this way allows egg-constructing expressions
and egg-matching patterns to have the same shape.

2.2 Patterns and templates

Macro transformers typically pattern match on uses of the macro to generate the macro’s
expansion. Although transformers could use the match form to match macro uses, Racket
provides the syntax-case pattern-matching form, which is more specialized to the task
of matching syntax fragments. The syntax-case form matches syntax objects, and the
associated syntax form produces a syntax object using pattern variables that are bound
by syntax-case. Arbitrary Racket code can occur between syntax-case’s binding
of pattern variables and the syntax templates that use them.

For example, the following implementation of defthunk expands a use like

(defthunk f (random))

to

(define (f) (random))

The macro transformer receives the use of defthunk as an in-stx argument, which
is a syntax object. The syntax-case form attempts to match in-stx to the pattern
(defthunk g e), which matches when the use of defthunk has exactly two

1 A structure description is itself a structure, and a structure can have a prop:procedure property that
determines how the structure behaves when applied to arguments.



Macros that work together 185

sub-forms; in that case, g is bound to the first sub-form and e is bound to the second
one:

(define-syntax defthunk
(lambda (in-stx)

(syntax-case in-stx ()
[(defthunk g e)
(if (identifier? (syntax g))

(syntax (define (g) e))
(error "need an identifier"))])))

The (syntax g) expression in the matching clause refers to the part of in-stx that
matched g in the pattern, and the macro transformer checks that the g part of a use in-
stx is an identifier. If so, the matching pieces g and e are used to assemble the macro
expansion.

A challenge in implementing syntax-case and syntax is communicating the pat-
tern variables bound by syntax-case to the uses in a syntax template. Since the
right-hand side of a syntax-case clause can be an arbitrary expression, syntax-
case cannot easily search for uses of syntax and replace pattern variables with match
references. One way to handle this problem is to build syntax-case and syntax (or,
at least, the notion of pattern variables) into the macro system. With generalized compile-
time bindings like those in Racket, however, syntax-case can be implemented instead
as a macro that binds each pattern variable to compile-time information describing how to
access the corresponding matched value, and syntax checks each identifier in a template
to determine whether it refers to such compile-time information.

For example, the above syntax-case clause is translated to the following:

(let ([tmp-g ... extract g from in-stx ...]
[tmp-e ... extract e from in-stx ...])

(if (and tmp-g tmp-e) ; if the pattern matched...
(let-syntax ([g (make-pattern-var (syntax tmp-g) 0)]

[e (make-pattern-var (syntax tmp-e) 0)])
(if (identifier? (syntax g))

(syntax (define (g) e))
(error "need an identifier")))

(error "bad syntax")))

Ignore for the moment that this expansion itself is being used as compile-time code. The
syntax-case form can be used in a run-time position, so think of the above expression
as run-time code.

The g and e pattern variables in the original syntax-case form are represented in the
expansion by compile-time records that contain references to the tmp-g and tmp-e vari-
ables that store the matched sub-forms. The records also store the ellipsis depth (Kohlbecker
& Wand, 1987) of the pattern variables so that syntax can report mismatches at compile
time. The syntax form checks each identifier in its template; if it is bound to a compile-
time pattern variable record, it is translated to a reference to the corresponding run-time
variable; otherwise, it is preserved as a literal syntax object. The inner if from therefore
expands to



186 M. Flatt et al.

(if (identifier? tmp-g)
(datum->syntax (list #’define (list tmp-g) tmp-e))
(error "need an identifier"))

where the datum->syntax primitive converts list structure into a syntax object.
When syntax-case is used in a compile-time position, it binds pattern variables as

meta-compile-time information, and pattern variables in templates are replaced by compile-
time variables. This kind of phase shifting is straightforwardly handled by the Racket
macro expander (Flatt, 2002).

2.3 Classes, definitions, and functions

The syntax of a Racket class expression is

(class superclass-expr decl-or-expr*)

The superclass-expr can be the built-in object% class2 or any other class, but the
decl-or-expr sequence is our primary interest. The sequence declares all of the fields
and methods of the class, in addition to expressions that are evaluated when the class is
instantiated (analogous to a constructor body).

A typical use of the class form defines some private fields and public methods. To
make the syntax of class easier for Racket programmers to remember, the syntax for
such declarations within a class builds on the standard define form normally used to
define variables and functions. For example,

(define chicken%
(class object%
(define eggs empty)
(public nesting? lay-egg)
(define (nesting?)

(not (empty? eggs)))
(define (lay-egg color size)

(set! eggs (cons (make-egg color size)
eggs)))

....))

defines a class chicken% that has a private field eggs and public methods nesting?
and lay-egg.

More than making the syntax easier to remember, reusing define for field and method
declarations means that syntactic forms that expand to define also can be used. For
example, a variant of define might support optional arguments by expanding to the plain
define form:

2 In Racket, class names traditionally end in %.



Macros that work together 187

(define/opt (lay-egg [color ’brown] [size 3])
(set! eggs (cons (make-egg color size)

eggs)))

which expands to Scheme’s case-lambda form to handle varying number of arguments:

(define lay-egg (case-lambda ....))

As another example, programmers using class often use a define/public form to
declare a public method, instead of writing separate define and public forms. The
define/public form expands to a sequence of public and define declarations.

Finally, although it is implicit in the function-shorthand uses of define above, the
class form also reuses lambda for method declarations. For example, the nesting?
method could have been written as

(define nesting?
(lambda () (not (empty? eggs))))

Similar to define, any macro that expands to lambda can be used with a define (or a
macro that expands to define) to describe a method.

In order for the class macro to properly expand, it must be able to detect all bind-
ings and functions in its body. Specifically, the macro must see all definitions to build
a table of fields and methods, and it must see the functions that implement methods so
that it can insert the implicit this argument (which a method receives when it is called)
into the method’s argument list. Thus, to allow the use of declaration forms like de-
fine/public, the class macro must force the expansion of each decl-or-expr to
expose the underlying uses of define, lambda, and public.

Scheme macro systems do not typically provide a way to force expansion of a
sub-form in the way that class requires. Sub-forms are normally expanded only when
they appear directly within a core syntactic form, after all of the surrounding macros
have been expanded away. That is, when a macro transformer returns an expression that
contains macro uses, the sub-expression macros are expanded iteratively. The class
form, however, needs to force expansion of its sub-forms before producing its
result.

The class form forces sub-expression expansion using the Racket local-expand
function. The local-expand function takes a syntax object to expand, along with other
arguments to be described later, and it returns the expanded form as a syntax object. The
resulting syntax object can be inspected, transformed, and incorporated into a larger result
by the macro transformer.

2.4 Internal definitions

The reuse of define in class has a precedent in standard Scheme: define can be
used inside lambda and other block forms to create local definitions. For example,



188 M. Flatt et al.

(define (cook eggs)
(define total-size (sum-eggs eggs))
(if (< total-size 10)

(cook-in-small-pan eggs)
(cook-in-big-pan eggs)))

creates a local binding total-size that is available only with the function body. Local
definitions like this are called internal definitions.

In a fully expanded program, internal definitions can be replaced with a letrec local
binding form.3 The process of macro expansion must somehow discover and convert inter-
nal definitions to letrec forms. Complicating this process, an internal definition can bind
a macro instead of a run-time variable, or an internal definition can shadow the binding of
an identifier from the enclosing environment. Each of such cases can affect the expansion
of later forms in a function body, even affecting whether the form is treated as an internal
definition or as an expression, as in the following case:

(define (cook-omelette eggs)
(define-syntax-rule (define-box id)
(define id (box empty)))

(define-box best-eggs)
(define-box left-overs)
(take-best-eggs! eggs best-eggs leftovers)
(values (make-omelette (unbox best-eggs))

rest-eggs))

To handle the interaction of internal definitions and expressions, a syntactic form that
allows internal definitions must partially expand each of its body sub-forms to determine
which are definitions. Each macro definition must be installed immediately for use in
expanding later body forms. If partial expansion reveals a run-time definition, expansion
of the right-hand side of the definition must be delayed, because it might refer to bindings
created later in the body (e.g., a forward reference to a function or macro that is defined
later in the body).

These issues are typically resolved internal to a Scheme macro expander (Ghuloum &
Dybvig, 2007; van Tonder, 2007) so that only built-in forms like lambda can accom-
modate internal definitions. Racket gives a macro transformer all of the tools it needs to
implement internal-definition contexts: partial sub-form expansion, an explicit representa-
tion of definition contexts, and an operation to extend a definition context with bindings
as they are discovered. Consequently, a lambda form that supports internal definitions
can be implemented in terms of a simpler lambda that allows only expressions in its
body. Similarly, the class form can support local macros among its field and method
definitions, or a lambda variant can support definitions mixed with expressions in its
body (instead of requiring all definitions first, as in the standard Scheme lambda form).

3 In the current Scheme standard (Sperber, 2009), internal definitions are converted to a letrec* form.
Racket’s letrec form corresponds to the standard’s letrec* form.



Macros that work together 189

To perform partial expansion of their sub-forms, the lambda and class macros pro-
vide local-expand with a stop list, a list of identifiers to use as stopping points in
expansion. For lambda, the stop list includes only the core syntactic forms, ensuring
that all definition-producing macros are expanded into core definitions. The Racket spec-
ification pins down the set of core syntactic forms, and the corresponding identifiers are
assembled in a library-provided list, which is sufficient to make most macros cooperate
properly. The class macro uses a stop list that also includes identifiers like #’public
and #’override, since those forms must be caught and interpreted by the class
macro; they are meaningless to the Racket macro expander.4 When macro uses nest and the
corresponding transformers use partial expansion, the inner transformer’s partial expansion
is not affected by the stop list of the outer transformer, so macros need not be aware of the
stop lists of other macros.

To support internal definitions, the lambda and class macros generate a new defi-
nition context value using the syntax-local-make-definition-context func-
tion. The macros provide this context value to local-expand along with the stop list to
partially expand the body forms in the scope of the definitions uncovered so far. When the
lambda or class macros detect a new definition via partial expansion, they install new
bindings into the definition context using syntax-local-bind-syntaxes. When
the macros detect a define form, they call syntax-local-bind-syntaxes with
just the defined identifiers, which are added to the definition context as bindings for run-
time variables. When the macros detect a define-syntax form, they call syntax-
local-bind-syntaxes with identifiers and the corresponding compile-time expres-
sion, which is evaluated and associated with the identifiers as compile-time bindings.

2.5 Packages

Definition contexts and compile-time binding further enable the implementation of a local-
module form as a macro. Racket’s define-package form resembles the module form
from Chez Scheme (Waddell & Dybvig, 1999) and the structure form of ML (Milner
et al., 1990). A set of definitions within a package can see each other, but they are hidden
from other expressions. Exported identifiers listed after the package name become visible
when the package is explicitly opened:

(define-package carton (eggs)
(define egg1 (make-egg ’blue 1))
(define egg2 (make-egg ’white 2))
(define eggs (list egg1 egg2)))

....
(open-package carton)

To allow definitions within a package to see each other, the define-package form
creates a definition context for the package body. The definition context does not es-
cape the package body, so no other expressions can directly access the package contents.

4 By convention, identifiers such as public are bound as macros that raise a syntax error when used incorrectly
– that is, outside a class body.



190 M. Flatt et al.

Meanwhile, the package name is bound to a compile-time description of the contents
so that open-package can make the exported names available in a later scope, and
the package name itself can be exported and imported like any other binding. When a
package is opened with open-package, the package’s names are made available by
new define-syntax bindings that redirect to the package’s hidden definitions.

Naturally, packages can be defined within packages, which is supported in the macro
API by allowing definition contexts to nest. Going even further, define-package sup-
ports a define* form that binds an identifier for only later expressions within the pack-
age body like ML’s nested val bindings instead of Scheme’s mutually recursive define
bindings. Such variations on binding scopes are possible in Racket because the machinery
of definition contexts is exposed in the macro API.

2.6 Tools

The DrRacket programming environment includes many tools that manipulate Racket pro-
grams and modules, including a debugger, a profiler, and a syntax checker. These tools all
work by first expanding the program so that they need to handle only the core forms of
the language. The tools are not macros, but they gain many of same sorts of benefits as
cooperating macros by using an expand function that produces a syntax object.

A typical Scheme macro expander (Ghuloum & Dybvig, 2007; van Tonder, 2007) takes
a syntax object and produces a raw S-expression (i.e., pairs and lists), but the expand
function produces a syntax object for the expanded program. Through syntax objects, the
original names of local variables are intact within an expanded program, while lexical-
context information in the syntax object relates binding occurrences to bound uses. Another
advantage is that various language extensions for manipulating syntax objects in macro
transformers – notably the syntax-case form that gives the macro system its name –
are also available for use by tools that process expanded programs.

Syntax objects thus serve as an intermediate representation of programs for all Racket
tools, whether they simply inspect the program (as in the syntax checker, to show the pro-
gram’s binding structure via arrows overlaid on the source text) or transform the program
(as in the profiler, to add instrumentation). To allow the latter, in particular, the output of
the expand function must also be a suitable input to expand, and expand must be
idempotent. Then a program transformer can introduce code into an expanded program
and pass it to eval, which will re-expand the program – potentially expanding forms that
were introduced by the transformer but leaving the previously expanded code intact.

3 Modeling macro expansion in Racket

This section builds up a formal model of Racket macro expansion. We build on a traditional
Lisp perspective instead of assuming previous Scheme models as background. In part, this
strategy is aimed at making the presentation as widely accessible as possible, but it also
lets us adjust and simplify some core representation and expansion details for Scheme-style
macros.

We begin with a core functional language without macros. We then create a surface
language and add syntax objects representing terms in the surface language to the set of



Macros that work together 191

core-language values. We progressively extend the model with naive macros, macros with
proper lexical scoping, and macros that communicate.

We use the following terminology to describe relationships between different compo-
nents. The reader consumes a surface program in textual form and produces its represen-
tation as a syntax object. That representation is recursively expanded until all macros have
been eliminated; the result is a “fully-expanded” syntax object. Finally, the fully expanded
syntax object is parsed into a core-language AST, which may be evaluated.

The sequence of models is implemented and typeset using PLT Redex (Felleisen et al.,
2009). The sources are available as supplementary material online at http:dx.doi.org/
10.1017/S0956796912000093

3.1 Core language

The core language of our model includes variables, function applications tagged with ,
and values. Values include functions formed with , lists formed with , symbols
formed with a curly quote, primitive operations, and possibly other kinds of data,

We represent a var as a name wrapped with a constructor. We use a constructor
to help distinguish names in general from names that are used to represent variables, since
names are also used in the representation of symbols.

Primitive operations are treated as literals (written in boldface) for simplicity. For ex-
ample, the term is the actual primitive operation itself, not a variable whose value
is the operation. Primitive operations are applied using the same form as for applying
functions, so allows multiple argument expressions, even though a accepts only
a single argument.

Evaluation of core language is standard (using substitution for functions):

The second case of eval defers the implementation of primitives to a relation, which
covers at least the primitive operations on lists:



192 M. Flatt et al.

The language can contain other primitive operations, such as , which are also given
meaning through .

3.2 Syntax objects

The core language serves two roles: It is the target language into which a surface program is
parsed, and it is also the language for implementing macro transformers. Consequently, the
values of the core language must include representations of the surface-language fragments
that macro transformers manipulate, that is, syntax objects.

To model syntax objects, we extend the core language’s values with syntax objects and
primitive operations on syntax objects:

The new primitive is short for Racket’s syntax-e, and is short for
make-syntax.

Syntax objects, tagged with combine a value with lexical-context information ctx.
The value must be either an atom or a list of syntax objects. We introduce lexical-context
information later, and for now just use for ctx.

The set of identifiers id is a subset of stx consisting of only those syntax objects that wrap
a symbol.

3.2.1 Names, variables, symbols, and identifiers

The terms name, variable, symbol, and identifier are easily confused, but we use each term
in a specific way. To recap,

• A name, such as x, is a member of some abstract set of tokens in the meta-language
(i.e., a “meta-symbol” in the implementing language, as opposed to a symbol in
the implemented language). Names are used in the representation of variables and
symbols.

• A variable, such as ( x), is the formal argument of a function, or it is a reference
to a function argument that is replaced by a value during evaluation. Variables appear
only in ASTs.

• A symbol, such as ’x, is a value during evaluation. A symbol can appear as a literal
expression, but since a symbol is constructed using a curly quote, it is never mistaken
for a variable and replaced with a value.

• An identifier, such as ( ’x ), is a symbol combined with a lexical context. Like
a symbol, an identifier is a value during evaluation – especially during the evaluation
of macro transformers.

A Lisp programmer may be tempted to think of variables as implemented with symbols.
Indeed, when an interpreter is implemented in Lisp, a variable or symbol in the interpreted



Macros that work together 193

language is typically represented using a symbol in the interpreter. Our eval, in contrast, is a
mathematical function; variables and symbols are therefore implemented by names, which
are entities in the mathematical world where the eval function resides. We highlight the
distinction between language and meta-language to clarify the concepts that are inherently
connected within the language (e.g., symbols and identifiers), and that are related only by
a representation choice in the meta-language (e.g., symbols and variables, both as names).

3.2.2 Readers and syntax objects

A reader consumes a textual representation of a surface program and produces a corre-
sponding syntax object. For example, the reader would convert the source program

(lambda x x)

into its representation as a syntax object,

We do not model the reader process that takes a sequence of characters for a source program
and converts it into a value that represents the source; we work only with the syntax-object
representation.

The following extension of models the new primitive and operations
on syntax objects:

That is, unwraps a syntax object by throwing away its immediate context, while
constructs a new syntax object by borrowing the context from an existing syntax

object (which might have been a literal value in the original program or might itself
have been constructed with ).

For example,

3.2.3 Model vs. implementations

The core model’s AST form is close to lambda in Scheme, and the sym represen-
tation is similar to a quoted symbol in Scheme. The model’s primitive operation is
analogous to a list function, while a constant is more like a quoted list in Scheme.
For example, the model AST

is analogous to the Scheme expression



194 M. Flatt et al.

’(lambda (x) y)

Along the same lines, an literal in the model AST is analogous to a syntax-quoted
form in Scheme. For example,

is analogous to

#’(lambda (x) y)

where #’ is a shorthand for a syntax form in the same way that ’ is a shorthand for a
quote form. Note that in Racket, the printed form of a syntax object reports its source
location (if any) and the encapsulated expression text:

> #’(lambda (x) y)
#<syntax:1:0 (lambda (x) y)>

The model primitive corresponds to the syntax-e function in Racket, and
in the model is similar to datum->syntax with its arguments reversed:

> (syntax-e (datum->syntax #’y ’x))
’x

Applying syntax-e to a complex syntax object exposes pieces that might be manipulated
with car and cdr. Often such pieces are reassembled with datum->syntax:

> (define stx #’(fun x y))

> (syntax-e stx)
’(#<syntax:1:0 fun> . #<syntax:1:0 (x y)>)
> (datum->syntax stx

(cons #’lambda
(cdr (syntax-e stx))))

#<syntax (lambda x y)>

The model is simpler and more primitive than Racket and Scheme in several ways.
The datum->syntax function recurs into a list whose elements are not syntax objects,
which is why the model’s non-recurring has a different name. In Racket, the core
form without pattern variables is quote-syntax, and syntax expands to quote-
syntax for literal program fragments. Standard syntax-case systems do not include
Racket’s syntax-e operation, although it is essentially the expose function from Dybvig
et al. (1993); instead, the built-in pattern-matching notation is used to deconstruct syntax
objects. The syntax->datum operation, meanwhile, recursively applies syntax-e,
discarding lexical-context information on both the immediate syntax object and nested
syntax objects.

Not all implementations of syntax-case associate a lexical context to a list or num-
ber. In Racket, consistently associating a lexical context to every program fragment gives
the programmer control over the expansion of constants and application forms. Such con-
trol is beyond the scope of this paper, but our model is intended to accommodate those



Macros that work together 195

extensions that are used heavily in the implementation of Racket (e.g., to support functions
with keyword arguments).

3.3 Parsing

For our purposes, we define parsing as the task of converting a syntax object to an AST
that can be evaluated. We define a parser for a Scheme-like language as follows:

• A lambda form is parsed into a ast node. Unlike in Scheme, lambda allows
only a single argument and omits a set of parentheses around the argument.

• All literal values, even primitive operations (written in boldface), must be quoted
in a source program; the quoted literals are parsed as atoms.

• A syntax form is parsed into an stx value (without support for pattern variables).
• A sequence of expressions grouped with parentheses is parsed as an node when

the first element of the group is not the name of a primitive syntactic form (such as
lambda or quote) or a macro.

• An identifier as an expression is parsed as a var.

For example, a function that accepts a single number argument to increment would be
written in the surface language as

(lambda x (’ x ’1))

which the reader converts to the stx

and the job of the parser is to convert this stx to the ast

3.3.1 Symbol-driven parser

Ignoring macros, and also assuming that keywords like lambda are never shadowed, we
could implement a parser from stxes to asts with the following parse meta-function:



196 M. Flatt et al.

The clauses to define meta-functions in this paper are ordered so that the next-to-last clause
of parse produces an form when the initial identifier in a sequence is not lambda,
quote, or syntax.

The parse function uses a strip meta-function to implement quote by stripping away
lexical context:

The difference between a quote form and a syntax form is that the latter does not strip
lexical context from the input representation.

3.3.2 Identifier-driven parser

When we add lexical-context information to stx (instead of just using ), parse will
need to take that information into account instead of simply looking for identifiers named
lambda, quote, and syntax. To prepare for that change, we refine parse as follows,
deferring identifier resolution to a resolve meta-function. For now, resolve simply extracts
the name in an identifier, but we will refine it later to use the lexical-context information of
an identifier.5

The parse meta-function in our model serves the same role as the parse meta-function
in the model of Dybvig et al. (1993). Unlike the Dybvig et al. (1993) model, where parse

is mutually recursive with an expand meta-function, our parse function works only on
fully expanded terms, and we define a separate expansion process that both consumes and
produces a syntax object. This difference paves the way for sub-form expansion (which
must expand without parsing), and it also reflects the use of syntax objects as a general-
purpose intermediate format in Racket (as discussed in Section 2.6).

3.4 Expansion

The next step to modeling Scheme macro expansion is to create an expander that takes a
syntax object for a source program and returns a syntax object for the expanded program.

5 Notation: We use “where” in the parse meta-function to write side conditions that more conventionally would
be written with “if,” whereas “where” more conventionally binds meta-variables. In later meta-functions, we
use “where” as in PLT Redex to generalize and unify conventional “where” and “if” clauses. That is, “where”
is a pattern-matching form that binds italicized meta-variables, and it also acts as a side condition by requiring
a match.



Macros that work together 197

The expander sits between the reader and the parser so that it starts with a syntax object that
may have macro definitions and uses, and it produces a syntax object that fits the limited
shape of syntax objects that are recognized by the parser. In addition to recognizing macro
definitions and uses, the expander will have to recognize all of the forms that the parser
recognizes; it nevertheless defers the production of an AST to the parser so that the result
of the expander can be used for further expansion in some contexts.

Even without introducing macros, the expander has a role in preparing a source program:
The parse meta-function assumes that a lambda identifier always indicates a function
form, but we want our source language to be like Scheme, where any identifier can be used
as a local variable name – even lambda. The expander therefore must rename formal
arguments of a function to ensure that they do not shadow the identifiers that parse uses as
key words.

The expander is implemented as an expand meta-function. To handle shadowing, and
eventually to handle macro bindings, a compile-time environment is provided to each
use of expand. This environment maps names to transforms, and expand normally starts
with an environment that maps lambda to the transform, quote to the
transform, and syntax also to the transform. (The parse meta-function treats
quote and syntax differently, but they turn out to be the same at the level of expand.)
A transform can also be an identifier tagged with , which represents a variable bound
by an enclosing function,

Each case for expand is similar to a corresponding case in parse, except that quote
and syntax are collapsed into a single case:

A significant difference from parse is that the lambda case of expand generates a new
name for the formal argument in a lambda form, which ensures that the expanded pro-
gram does not use any parse-recognized names as variables. The lambda case maps the
original name to the new one in the environment for the lambda form’s body. Corre-
spondingly, the case in expand for expanding a variable reference installs the new name in
place of the original, which it finds by consulting the environment.

As an example, the source

expands to the identity function essentially as follows:



198 M. Flatt et al.

To make the expansion trace above more readable, identifiers are reduced to their resolve

results, lexical-context information is dropped, stands for the initial environment, and
other obvious simplifications are applied.

3.5 Binding and using macros

To support macros, we extend the source language with a let-syntax form that is a
simplified version of Scheme’s macro-binding forms. Our let-syntaxwill bind a single
identifier to a macro transformer function for use in the let-syntax body expression.
For example, the following source program defines and uses a thunk macro to delay
evaluation of an expression until it is applied to a (dummy) argument:

(let-syntax
thunk (lambda e

(’
(’ (syntax lambda) (syntax a)

(’ (’ (’ e))))
e))

((thunk (’ ’1 ’2)) ’0))

The e argument to the macro transformer is the representation of the use of the macro
(thunk (’ ’1 ’2)). The transformer extracts the (’ ’1 ’2) sub-expression
from this representation using , , and on e. The transformer then places
the sub-expression into a lambda expression using and , producing a
representation of (lambda a (’ ’1 ’2)).

Support for macros in the expander requires a new transform to serve as a
binding for let-syntax. Furthermore, the expansion of a let-syntax form binds an
identifier to a compile-time value:

The expander needs new cases for evaluating core-form expressions during the process of
expansion. No changes are needed to ast or parse to support macros, however, since the
expander eliminates all uses of macros. The new expander cases include all of the old cases,
plus cases for macro bindings and macro applications. The macro-binding case implements
the new transform:

In this case, to evaluate the right-hand side of a let-syntax form, the right-hand side
is first parsed. Using parse directly reflects the fact that this model does not cover macro
transformers that are implemented in terms of macros (except that a macro expansion can



Macros that work together 199

include uses of macros).6 The parsed right-hand side is then evaluated, and the result is
bound in the compile-time environment while the let-syntax body is expanded.

The case for a macro application is triggered when the compile-time environment maps
a name to a function value. Invocation of the macro applies the value from the environment
to the macro-use source form. After the macro produces a value (which must be a syntax
object), the expander is again applied to the result.

Since we have not yet added lexical-context information to syntax objects, the macro
system at this point resembles a traditional Lisp defmacro system. For example, using
the thunk macro as defined above, the expression

(((lambda a (thunk (’+ a ’1))) ’5) ’0)

produces 1 instead of 6 because the a binding introduced by the thunk macro captures
a in the expression supplied to thunk. That is, the thunk macro does not respect the
lexical scope of the original program. The expander produces this result for the lambda
form roughly as follows, in an environment that maps thunk to the transformer:

3.6 Tracking lexical context

To change the macro system so that macro transformers respect lexical scope, we introduce
lexical-context information into syntax objects.

3.6.1 Scope examples

The first challenge in tracking binding through macro expansion is illustrated by the fol-
lowing example:

((lambda x
(let-syntax m (lambda stx (syntax x))

(lambda x
(’ (m) x))))

1)

6 Although expand could be applied to transfomer expressions using the current compile-time environment as in
Dybvig et al. (1993), doing so mixes binding phases in a way that is not true to Racket or allowed by the current
Scheme standard (Sperber, 2009). The model is instead easily generalized to support expansion of transformer
expressions through modules and phases (Flatt, 2002).



200 M. Flatt et al.

The expansion of (m) carries a reference to the outer x into the scope of the inner x.
Proper lexical scoping demands that the two xs are kept distinct.

At first glance, the solution is simply to capture the compile-time environment in either
the m binding, the (lambda stx (syntax x)) closure, or the (syntax x) syntax
object. That way, when the x that is introduced by the expansion of m is further expanded,
the captured environment is used instead of the current compile-time environment. The
captured environment then correctly maps x to the binding from the outer lambda.

Although the intuition is appealing, a simple environment-capturing approach does not
work in general, because identifiers introduced by a macro expansion can appear in binding
positions as well as use positions. For example, in

(lambda x
(let-syntax n (lambda stx

; expand (n e) to (lambda x (’ e x))
(’
(’ (syntax lambda) (syntax x)

(’
(’ (syntax ’ )

(’ (’ (’ x)))
(syntax x))
stx))

stx))
(n ’1)))

the expansion of (n ’1) is (lambda x (’ ’1 x)). If the last x simply carried a
compile-time environment from its source (syntax x) expression, then x would refer to
the outermost x binding instead of the one bound by the new lambda in the expansion of
(n ’1).

The difference between the (n ’1) and (m) examples is that (m) introduces x after
the lambda that should bind x has been expanded, while (n ’1) introduces x before
the lambda that should bind x is expanded. More generally, lambda and let-syntax
forms can nest arbitrarily, and macros can expand to definitions of macros so that identifier
bindings and introductions can be interleaved arbitrarily. This combination of local macros
and macro-generating macros defeats a simple capturing of the compile-time environment
to bind macro-introduced identifiers.

We can more easily account for identifier binding by renaming identifiers in a syntax
object instead of trying to delay the substitution through an environment. That is, whenever
the expander encounters a core binding form like lambda, it applies a renaming to the
syntax object instead of merely recording the binding in the compile-time environment.
When the expander encounters the first lambda in the example containing (m), it renames
the binding to x1:

((lambda x1
(let-syntax m (lambda stx (syntax x1))
(lambda x1

(’ (m) x1))))
1)



Macros that work together 201

The macro-binding m is similarly renamed to m1. When the expander later encounters the
inner lambda, it renames x1 further to x2.

(lambda x2
(’ (m1) x2))

Since x1 is renamed x2 only within the inner lambda form, (m1) expands to a use of x1,
which still refers to the outer lambda binding.

The example with (n ’1) works similarly, where the outer lambda’s binding is
renamed to x1, along with all instances of x quoted as syntax in the n transformer. The
expansion of (n1 ’1) is then (lambda x1 (’ ’1 x1)) so that the macro-introduced
x1 is bound by the macro-introduced binding of x1 – both of which will be immediately
renamed by the expander to x2.

Renaming is a step in the right direction, but it turns out to be only half of the story.
Consider a variation of the (n ’1) example with x in place of ’1:

(lambda x
(let-syntax n ....

(n x)))

The x in (n x) should refer to the outer lambda binding. According to our story so far,
renaming leads to (n1 x1), which expands to (lambda x1 (’ x1 x1)), at which
point the x1 from (n1 x1) is inappropriately captured by the macro-introduced binding
of x1.

To avoid this kind of incorrect capture, Dybvig et al. (1993) build on the technique
of Kohlbecker et al. (1986). The key is to track syntax objects that are newly introduced
by a macro expansion versus syntax objects that were originally provided to the macro
expansion. Specifically, the result of a macro transformer is marked in such a way that
a mark sticks to parts of the expansion that were introduced by the macro, while parts
that were present in the macro use are unmarked. Representing marks as superscripts, the
expansion of (n1 x1) becomes (lambda2 x1

2 (’ 2 x1 x1
2)), since the lambda,

binding x1, ’ , and last x1 are all introduced by the macro expansion, while the next-to-
last x1 was present in the use (n1 x1).

Marks, as represented by superscripts, are not treated as a part of a name in the same
way as renamings, as represented by subscripts. In particular, lookup in a compile-time
environment ignores marks, so lambda2 indicates in the same way as lambda.
Marks affect renamings, however: A renaming applies only to identifier uses that have the
same current name and marks as the binding identifier. Thus, when the expander encounters
(lambda2 x1

2 (’ x1 x1
2)), it renames x1

2 to x2, leaving the unmarked x1 alone so
that the result is correctly (lambda x2 (’ x1 x2)).

3.6.2 Marks and renames as lexical context

In the model, instead of subscripts and superscripts, marks and renames are attached to a
syntax object through the lexical-context part of a syntax object. Renames are not



202 M. Flatt et al.

implemented by changing the symbol within an identifier because the original symbol is
needed if the identifier turns out to be quoted. For example, in

(lambda x
’x)

the expander renames x to x1, but the body of the lambda form should produce the
symbol ’x, not the symbol ’x1. Meanwhile, the expander cannot simply skip quote
forms when renaming because some quoted forms may not become apparent until macro
expansion is complete. By putting renaming information into the lexical-context part of an
identifier, the original symbol is intact for quoting.

To support mark and rename information in lexical context, we add two productions to
the grammar of ctx:

The and constructors each build on an existing context. A adds a
fresh mark, where a mark is implemented as a name, although integers would work just
as well. A record maps a particular identifier (with its own renamings and marks
intact) to a fresh name.

The mark and rename meta-functions push and records down to all ctx
chains in a syntax object:

When a transformer expands a macro use, only syntax objects that were introduced by
the macro should be marked, while syntax objects that were part of the macro use should
remain unmarked. The technique of Dybvig et al. (1993) is to mark the input of a macro
transformer using a fresh key, mark the result of the transformer again with the same key,
and treat double marks as canceling each other. This canceling behavior is reflected in the
marksof meta-function, which extracts the set of non-canceled marks from an identifier:

The marksof function only needs the ctx part of an identifier, but we define it on identifiers
as a convenience.

Finally, the redefined resolve meta-function traverses a ctx to interpret marks and re-
namings. The crucial clause in resolve handles a record, which renames if the
source identifier of the rename is consistent with the resolution of the rest of the ctx. The



Macros that work together 203

two are consistent when they correspond to the same name after nested renamings and have
the same set of marks:

The resolve function otherwise ignores marks, which is why a macro introduced but never
renamed lambda2,

resolves the same as a plain lambda,

Note that in the first case of resolve, when both id and ( name ctx) resolve
to name1, and when name1 is itself the result of renaming, then id and ( name ctx) must
have the same marks after the renaming – or else the renaming to name1 would not apply.
(Since the expander generates a fresh name for each renaming, any renaming to name1

will be the same renaming, and hence it requires the same marks wherever it applies.) We
can exploit this fact to implement a shortcut in marksof: If a renaming to a given name1 is
encountered, then ignore any remaining marks because the results for both identifiers will
be the same.

To support the shortcut, a revised marksof accepts a traversal-stopping name, the last
case of marksof is split into matching and non-matching cases for the name, and the third
case of resolve changes to provide the name to marksof:

As it turns out, this shortcut particularly simplifies the implementation definition contexts,
as explained later in Section 3.8.

3.6.3 Adapting the expander

With the machinery of marks and renames in place, we can adapt our defmacro-style
macro model to a Scheme-style model by changing the macro-application, lambda, and
let-syntax cases of expand.

A revised macro-application case for expand shows the before-and-after marking oper-
ations that track the parts of a syntax object that are introduced by a macro expansion:



204 M. Flatt et al.

The revised lambda case generates a renaming for the formal argument of the function,
and then it uses rename to apply the renaming to the body of the lambda form:

The environment is still extended to record that the generated name corresponds to a vari-
able. More generally, the model uses lexical context information to represent the identity
of bindings, but the compile-time environment still represents the meanings of bindings.

Since let-syntax introduces a local binding in the same sense as lambda, it must
rename the local variable in the same way:

With the new expand cases, the thunk example of the previous section expands with
proper handling of lexical scope:



Macros that work together 205

3.7 Compile-time bindings and local expansion

At this point, our model covers macros as they are available in many Scheme implemen-
tations. We now add two new primitives that reflect the expanded macro API of Racket:

(short for syntax-local-value) for accessing arbitrary compile-time bind-
ings, and (short for local-expand) for forcing the expansion of a sub-form.

The new primitives are available only during the application of a macro transformer, so
we add them to a new set of atoms tprim:

Evaluation of a tprim application does not use because it relies on the expansion
context. In particular, application of extracts a value from the compile-time envi-
ronment, and must cancel any mark introduced for the current expansion before
starting a nested expansion. We therefore revise eval to accept a compile-time environment
and mark in addition to the expression to evaluate.

To evaluate the use of , the argument expression is evaluated and must produce
an identifier, and the identifier must be mapped to a value in the current compile-time
environment, in which case that value is the result of the call:

The essence of is that eval for an application of must use expand.
In addition, requires two bookkeeping steps:

• Before forcing expansion of the given syntax object, applies a mark to
cancel the one from the enclosing macro application, and then it adds the mark
back after nested expansion (to be canceled again when the enclosing expansion
completes). By removing and restoring the mark for an outer expansion that is in
progress, avoids interference between the original expansion and the sub-
form expansion.

• To enable partial expansion, the stop list provided to creates new bindings
in the compile-time environment to a transform. In addition, in much the
same way that removes the current expansion’s mark before starting
a sub-form expansion, existing transforms are removed from the compile-
time environment by using nostops in case a macro transformer that is invoked via

itself calls :



206 M. Flatt et al.

The eval rule for puts these steps together along with the evaluation of argu-
ments to :

Expansion of a form that has a transform is the same as for a transform,
except that multiple sub-forms are allowed inside the form:

To illustrate, the program

(let-syntax
public (lambda e (’ ))

(let-syntax
class (lambda e

((lambda e2
(’ (’ (’ e2))))

(’ (’ (’ (’ e)))
(’ (syntax public)))))

(class (public ’8))))

simulates how public in the class system makes sense only within a class form (other-
wise it reports a syntax error), while class locally expands its body stopping at public
forms. The program expands to 8 roughly as follows (omitting lexical-context information,
since it is not directly relevant to the example):

Local expansion is consistent with full expansion only when the stop list is either empty
or when the stop list contains at least the primitive binding forms. If a stop list omits



Macros that work together 207

a binding form, but includes a form that can wrap a reference to a bound variable, then a
partial expansion can produce a different result than full expansion. This effect is illustrated
in the following example:

(let-syntax
stop (lambda e (’ (’ (’ e))))
(let-syntax
ex (lambda e

(’ (’ (’ (’ e)))
(’ (syntax stop))))

(ex (lambda x (let-syntax
arg (lambda e (syntax (stop x)))

(arg))))))

When the ex macro forces the expansion of (lambda x ....) and stops at uses of
stop, the result is essentially (lambda x2 (stop x2)), where both x2s are really xs
with wrappers to redirect x to some x2. The latter x, however, also has a
due to introduction by the local arg macro. Re-expanding (lambda x2 (stop x2))
therefore produces (lambda x3 (stop x2)); since the marks on the two x2s are not the
same, the new x3 binding does not capture the inner x2.

3.8 Definition contexts

To support definition contexts, we add two new expansion-time primitives:
(short for syntax-local-make-definition-context) for creating new contexts,
and (short for syntax-local-bind-syntaxes) for binding names in a
context.

A definition context is similar to a record in a syntax object except that the set
of renamings associated with the context is extensible imperatively. Updates of a definition
context require a definition-context store with addresses . A wrapper for syntax
objects encapsulates a , and can also tag a to form a value. Within , maps
identifiers to renamed variables,

When resolve encounters a wrapper, it unpacks the wrapper into a sequence of
wrappers. For reasons explained below, the generated wrappers must

record the source definition context. Thus, is extended above to include an ad-
dress . The special address is used for wrappers that originate from
lambda or let-syntax renamings.

The expand cases must be revised to take a argument and produce a resulting 〈stx, 〉
tuple, and eval must similarly consume and produce a . For the existing cases, the is



208 M. Flatt et al.

simply carried through, including to the resolve and parse meta-functions. The new case
in eval for a form, however, extends the definition-context store with a new,
empty definition context:

A new eval case handles the use of to extend a definition context with an
identifier that corresponds to a run-time binding. A run-time binding is just like one created
by lambda, and similarly generates a fresh variable and maps the original
identifier to the new variable for syntax objects. While the expansion of lambda applies
the renaming to a body expression, evaluation of records the renaming in a
definition context. Evaluation of also extends the compile-time environment
to indicate that the generated variable maps to itself, just like the expansion of lambda

When is used to bind an identifier to a compile-time value (including a
macro transformer), the given compile-time expression must be evaluated, and then its
result can be bound in the environment. Like the evaluation case for binding variables, the
case for binding a compile-time value generates a fresh variable, maps it in the definition
context, and extends the compile-time environment. In this case, however, the extended
compile-time environment contains a compile-time value, instead of just a variable

A definition context is associated with an expression by extending to accept
a definition context as its last argument. The definition context is applied to the given
expression before it is expanded (using a defs meta-function that is like rename and mark)
so that expansion uses the context. Less obviously, the definition context is also added to
the result of local expansion. For syntax objects introduced by local expansion, the second
addition ensures that if the introduced syntax objects correspond to a definition, then the
definition’s binding will use the correct lexical context

Given the extended definition of ctx, a natural extension of resolve is to add a
clause while generally extending resolve to accept the current store . The new



Macros that work together 209

clause could simply unpack the wrapper into a set of wrappers based on the
content of the definition context in the store, then recur:

This simple extension of resolve does not work because it does not terminate when is
part of a cycle in . A cycle is created in for most definition contexts because each
defined identifier is placed into the context where bindings occur. More complex cycles
are created when definition contexts are nested, as in nested define-package forms
(see Section 2.5). For example, in the Racket expression

(define-package p ()
(define x 1)
(define-package q ()

(define x 2)))

the two defined identifiers must resolve to different bindings, say, x1 and x3. The corre-
sponding syntax objects are roughly

The first identifier has twice because the identifier appears in both the first define form
and its expansion. The second identifier has nested s because it appears before and after
both the outer expansion of define-package and the inner expansion of define. In

, the binding reflects the final identifiers. The binding reflects the state of the second
x by the time it was bound for the inner package. It was put into the context during the
expansion of the define-package form, and then put into the context before and
after expanding the inner define. The inner expansion created the temporary binding
x2, but it was later subsumed by the x3 binding for the enclosing context.

To accommodate cycles within , resolve must keep track of the contexts that are
already being used toward a renaming. For an initial call to resolve, no contexts are already
being used. When a tag is unpacked into s, then the corresponding context
is already being used for the purposes of checking targets of renamings in the branches of
the wrapper (i.e., the id in each wrapper). However, the context is not yet used
for the spine of the lexical-context wrapper, because if no renaming applies among the
unpacked ones, a later wrapper for the same definition context might apply. Thus,
resolve accepts two sets of definition contexts to be skipped: one for the spine, and another
for branches that are rename targets,



210 M. Flatt et al.

Finally, we revise marksof to handle wrappers, taking care to properly support
renaming of identifiers that are bound in the definition context. Consider the following
Racket example:

(lambda ()
(define x 1)
(define-syntax m (lambda (stx) #’(list x)))
(m))

When a definition context is used to expand the body forms of this lambda, then all iden-
tifiers acquire the definition context. The local expansion of (m), furthermore, produces
an x that has a mark in addition to the definition context. If the x from define is then
used as a letrec binding to continue expansion, then the extra mark on the x from (m)
could prevent it from being bound by the letrec. This is the same potential problem as
described at the end of Section 3.7, and it occurs because (m) is expanded only far enough
to discover that it acts an expression rather than a definition.

To avoid this problem, resolve must ignore marks that are introduced during partial ex-
pansion for identifiers that are bound by the partial expansion’s definition context. Ignoring
such marks simulates a complete expansion, which would replace a marked variable with
the fresh name that is used for its binding. Since adds the definition context to
both its argument and result, two instances of the definition context serve to bracket the
marks that should be ignored later by resolve. Combining this idea with the observation
from Section 3.6.2 that marks after the definition-context renaming can be ignored for a
further renaming, it suffices to make marksof ignore all marks after the first instance of a
definition-context renaming:

4 Related work

Our model builds directly on the model of Dybvig et al. (1993), adding extensions for
compile-time bindings, partial expansion, and definition contexts. Another difference in
our model is that the expander, which maps syntax objects to syntax objects, is decoupled
from the parser, which maps syntax objects to an executable AST. This change allows us
to model local-expand, but it also reflects Racket’s pervasive use of syntax objects



Macros that work together 211

as a basis for program analysis and transformation (see Section 2.6). Previous models
of Scheme macros do not account for the handling of internal-definition contexts (e.g.,
in the body of lambda); ribs, as described informally by Waddell and Dybvig (1999),
sound similar to our definition contexts, but no model is provided, and the construct is not
accessible to macro transformers.

Our model inherits one drawback of the Dybvig et al. (1993) model: Whether marks
and renamings actually make macros respect lexical scope as intended is hardly apparent.
Other models of macros face similar problems:

• Gasbichler (2006) attacked the gap between specification and mechanism in his
model of macros based on explicit substitutions, but Gasbichler’s model treats
pattern-variable bindings differently than other bindings, which turns out not to work
completely right for macro-generating macros, thus leaving a gap in the explanation.

• The λm calculus of Herman (2010) creates a tight correspondence between speci-
fication and behavior for a restricted subset of syntax-rules macros. The λm

calculus uses a custom-type system to specify the binding structure of a macro’s
arguments. Expressions are annotated with the new bindings brought into scope,
and macros with ambiguous scoping rules are disallowed. The calculus does not
handle the flexibility and power of syntax-case macros, and the type system
would require significant extension to represent the essence of local expansion and
definition contexts.

• Other frameworks for lexically scoped macros, notably syntactic closures (Baw-
den and Rees, 1988) and explicit renaming (Clinger, 1991), use a notion of lexi-
cal context that more directly maps to the programmer’s view of binding scopes.
Unfortunately, the more direct representation moves binding information into the
expansion environment; in the case of syntactic closures, it tangles the representation
of syntax and expansion environments, and in the case of explicit renaming, identifier
comparisons depend on a compile-time environment. Our goals require a purely
“syntactic” representation of syntax, which can be locally expanded, transported into
a new context, and then re-expanded.

An important direction for further research is to find a model with the syntactic advantage
of Dybvig et al. (1993), but with a more obvious connection to the usual notion of binding
scopes that is able to support our extensions for cooperation among macros.

Previous work on expansion-passing style macros (Dybvig et al., 1988) addresses the
problem of expanding sub-forms in a macro use. In expansion-passing style, a macro re-
ceives two arguments: the term to transform and an expander function. The macro can call
the function to expand sub-forms, and it can pass a modified expander function to be used
for the sub-form expansion. Similarly, Common Lisp provides the functions macroex-
pand and macroexpand-1, as well as an expansion hook *macroexpand-hook*.
Both of these mechanisms give macros the power to expand sub-forms, and they give
a macro the ability to change the expander’s behavior for the duration of the sub-form
expansion. In contrast, local-expand always invokes the standard expander, allowing
only the addition of new stopping conditions and an optional definition context. These re-
strictions make local-expand less powerful but more predictable than previous mech-
anisms for sub-form expansion. In addition, local-expand works with macros that



212 M. Flatt et al.

respect lexical scope, whereas previous facilities were developed for scope-oblivious sys-
tems.

Continuation-passing style (CPS) also enables a kind of sub-form expansion for macros,
as described by Hilsdale and Friedman (2000). Only macros explicitly written in CPS can
participate in sub-form expansion, so such macros cannot easily reuse existing forms like
define. Furthermore, since macros cannot verify that sub-forms follow the protocol,
mistakes generally lead to mysterious error messages at best and bewildering behavior at
worst.

Compile-time meta-programming in the style of Template Haskell (Sheard and Peyton
Jones, 2002) supports the expansion of sub-forms within a macro transformer because
macros are compile-time functions that can be called directly from other compile-time
functions. Macros in the Template Haskell also respect lexical scope. Unlike Lisp and
Scheme, however, uses of macros must be explicitly marked in the program source with
a leading $, which creates different demands on the representation of syntax and the
resolution of binding. For example, an identifier’s role within a template as binder or not
can be determined immediately, whereas the determination must be delayed within Scheme
templates. The advantage of Scheme-style macros, and the target of our work, is to allow
new syntactic forms that have the same status as built-in syntactic forms, thus supporting
a tower of languages.

Other systems address the need for cooperation and communication of language exten-
sion at a different level. Both Ziggurat (Fisher and Shivers, 2008) and Silver (Van Wyk
et al., 2009) support static analysis in languages with extensible syntax. Expansion or
“delegation” is automatically triggered by the system as necessary to support analyses,
and expansion proceeds only far enough to produce a syntactic form that can be analyzed.
Compared to Ziggurat and Silver, macro expansion in Racket is simpler and at a lower
level; only expansion and binding information is available for a sub-term, and other infor-
mation must be encoded in the expansion.

Language constructs based on fresh names (Gabbay and Pitts, 1999; Shinwell et al.,
2003) or the higher order abstract syntax (Pfenning and Elliott, 1988; Pfenning and
Schürmann, 1999) address the problem of manipulating program fragments with bindings,
but they have different operations than syntax objects. Programs using fresh-name features
explicitly open and close term representations instead of automatically absorbing lexical in-
formation. With the higher order abstract syntax, binders and bindings are implicit instead
of entities that can be manipulated explicitly. Syntax objects fit somewhere in between:
lexical information is maintained automatically but can be manipulated more directly.

Acknowledgments

Thanks to Robert Ransom, Michael Sperber, Mitch Wand, Paul Stansifer, and the anony-
mous referees for many helpful comments and suggestions.

References

Bawden, A. & Rees, J (1988) Syntactic closures. In Proceedings of the Lisp and Functional
Programming, July 25–27, Snowbird, UT, USA. Pittsburgh: ACM, pp. 86–95.

Clinger, William D. (1991) Hygienic macros through explicit renaming. LISP Pointers 4(4), 25–28.



Macros that work together 213

Clinger, C. & Rees, J. (1991) Macros that work. In Proceedings of ACM Symposium on Principles of
Programming Languages. New York, NY: ACM, pp. 155–162.

Dybvig, R. Kent, Friedman, Daniel P. & Haynes, Christopher T. (1988) Expansion-passing style: A
general macro mechanism. LISP Symb. Comput. 1(1), 53–75.

Dybvig, R. Kent, Hieb, R. & Bruggeman, C. (1993) Syntactic abstraction in Scheme. LISP Symb.
Comput. 5(4), 295–326.

Felleisen, M., Findler, R. B. & Flatt, M. (2009) Semantics Engineering with PLT Redex. Cambridge,
MA: MIT Press.

Fisher, D. & Shivers, O (2008) Building language towers with Ziggurat. J. Funct. Program. 18(5–6),
707–780.

Flatt, M. (2002) Compilable and composable macros, you want it when? In Proceedings of the
Seventh ACM SIGPLAN International Conference on Functional Programming (ICFP 2002),
Pittsburgh, PA, USA, October 4–6, pp. 72–83.

Gabbay, M. & Pitts, A. (1999) A new approach to abstract syntax involving binders. In the
Proceedings of the 14th IEEE Symposium on Logic in Computer Science (LICS’99), Trento, Italy,
pp. 341–363.

Gasbichler, M. (2006) Fully-Parameterized Higher-Order Modules with Hygienic Macros. PhD
dissertation, Universität Tübingen, Tübingen, Germany.

Ghuloum, A. & Dybvig, R. Kent (2007) Portable syntax-case. Accessed April, 2012. Available at:
https://www.cs.indiana.edu/chezscheme/syntax-case/

Herman, D. (2010) A Theory of Typed Hygienic Macros. PhD dissertation, Northeastern University,
Boston, Massachusetts.

Hilsdale, E. & Friedman, D. P. (2000) Writing macros in continuation-passing style. Proceedings of
the Workshop on Scheme and Functional Programming, Montreal, September 17.

Kohlbecker, E. Eugene, Friedman, Daniel P. Felleisen, M. & Duba, B. (1986) Hygienic macro
expansion. In Proceedings of the ACM Conference on Lisp and Functional Programming. New
York, NY: ACM, pp. 151–181.

Kohlbecker, E. Eugene & Wand, M. (1987) Macro-by-example: Deriving syntactic transformations
from their specifications. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, Munich, Germany, January 2123, pp. 77–84.

Milner, R., Tofte, M. & Harper, R. (1990) The Definition of Standard ML. Cambridge, MA: MIT
Press.

Pfenning, F. & Elliott, C. (1988) Higher-order abstract syntax. In Proceedings of the SIGPLAN
’88 Conference on Programming Language Design and Implementation. New York, NY: ACM,
pp. 199–208.

Pfenning, F. & Schürmann, C. (1999) System description: Twelf – a meta-logical framework for
deductive systems. In Proceedings of the International Conference on Automated Deduction,
Trento, Italy, pp. 202–206.

Sheard, T. & Peyton Jones, S. (2002) Template meta-programming for Haskell. In Proceedings of
Haskell Workshop 2002, Pittsburgh, PA, USA, pp. 60–75.

Shinwell, Mark R., Pitts, A. M. & Gabbay, M. J. (2003) FreshML: Programming with binders made
simple. In Proceedings of the 8th ACM International Conference on Functional Programming.
New York, NY: ACM, pp. 263–274.

Sperber, M. (Ed.) (2009) Revised 6 report on the algorithmic language Scheme. J. Funct. Program.
19(supplement), 1–301.

Van Tonder, A. (2007) R6RS libraries and macros. Accessed April, 2012. Available at: http://
www.het.brown.edu/people/andre/macros/

Van Wyk, E., Bodin, D., Krishnan, L. & Gao, J. (2009) Silver: an extensible attribute grammar
system. Sci. Comput. Program. 75(1–2) doi: 10.1016/j.scico.2009.07.004



214 M. Flatt et al.

Waddell, O. & Dybvig, R. Kent (1999) Extending the scope of syntactic abstraction. In Proceedings
of ACM Symposium on the Principles of Programming Languages. New York, NY: ACM,
pp. 203–213.

Supplementary materials

For supplementary material for this article, please visit
http:dx.doi.org/10.1017/S0956796812000093.

Appendix



Macros that work together 215



216 M. Flatt et al.


