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ABSTRACT
Memory-trace Obliviousness (MTO) is a noninterference property:
programs that enjoy it have neither explicit nor implicit information
leaks, even when the adversary can observe the program counter
and the address trace of memory accesses. Probabilistic MTO re-
laxes MTO to accept probabilistic programs. In prior work, we
developed λobliv, whose type system aims to enforce PMTO [2].
We showed that λobliv could typecheck (recursive) Tree ORAM [6],
a sophisticated algorithm that implements a probabilistically obliv-
ious key-value store. We conjectured that λobliv ought to be able
to typecheck more optimized oblivious data structures (ODSs) [8],
but that its type system was as yet too weak.

In this short paper we show we were wrong: ODSs cannot be
implemented in λobliv because they are not actually PMTO, due to the
possibility of overflow, which occurs when a oram_write silently fails
due to a local lack of space. This was surprising to us because Tree
ORAM can also overflow but is still PMTO. The paper explains what
is going on and sketches the task of adapting the PMTO property,
and λobliv’s type system, to characterize ODS security.
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1 ORAM AND TREE ORAM
An Oblivious RAM (ORAM) is a random-access memory, mapping
(secret) keys to (secret) data.
1 type key = nat<S>
2 type data = ...
3 type oram = ...
4 val oram_create : nat → oram
5 val oram_read : oram→ key → bool<S> ∗ data
6 val oram_write : oram→ key → data → bool<S>

We make keys natural numbers, for simplicity. The <S> annota-
tion on types indicates they are considered secret. The oram_read

operation returns a secret boolean indicating if the key was found
in the ORAM. If this value is false then the data is garbage (a default
value). Likewise, oram_write indicates whether or not the key and
data were successfully written to the ORAM. This will only fail if
the ORAM is full, so a false return value indicates overflow.

There are many deployment scenarios for ORAM but here is
a simple one: A less-trusted server stores the data blocks, while
a trusted client runs the ORAM code that retrieves these blocks.
The client encrypts the data blocks (hiding their contents from the
server) and it hides a block’s relationship to its key in some way,
e.g., by obfuscating the access pattern.

1.1 Trivial ORAM
The simplest ORAM implementation is Trivial ORAM, which is an
array of key-value pairs, but with an extra bit indicating if the cell
is occupied:
1 type oram = (bool<S> ∗ key ∗ data) array

For example, the Trivial ORAM [| ( true , 1, "a" ) ; ( true , 3, "b" ) ; (

true , 2, "c" ) ; ( false , 0, " " ) |] stores the value "a" at (logical) key 1,
"c" at 2, and "b" at 3. The last array cell is unoccupied, as indicated
by the first component being false . Trivial ORAM’s oram_read and
oram_write operations access every address of the array; this way the
(adversary-visible) address trace reveals nothing about whether the
key is present in the ORAM or not. In our deployment scenario,
the oram contents can all be stored server-side, while the code runs
client-side. This code is, of course, inefficient: each operation takes
time O(n) where n is the size of the Trivial ORAM.

1.2 Tree ORAM
Modern ORAM implementations achieve performance Ω(log(n)) by
employing randomness [3]. As an example, consider Tree ORAM [6].
Its memory is structured as a complete tree where each node (called
a bucket) is a Trivial ORAM. Every tree_read performs all physical
memory accesses along one particular path through the tree. Here
is Tree ORAM’s API and parts of its code:
1 type pos = nat<S>
2 type cldata = ...
3 type data = pos ∗ cldata
4 type tree_oram = oram array
5
6 let default_block () = ( false , 0, (rnd, ...) )
7
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8 val tree_create : nat → nat → tree_oram
9 let tree_create n m =
10 array[n](fun _ → array[m](fun _ → default_block () ) ) )
11
12 val tree_read : tree_oram → key → nat → bool<S> ∗ data
13 let tree_read t k p =
14 let len = length( t ) in (∗ len = 2^k − 1, k > 0 ∗)
15 let depth = log 2 ( len + 1) in (∗ depth = k ∗)
16 let rec iterate level acc = (∗ level goes from 0 ... k ∗)
17 if level = depth then acc
18 else
19 let base = (2 ∗∗ level ) − 1 in
20 (∗ base + (p & base) is node on path p at level ∗)
21 let bucket = t[base + (p & base)] in
22 let curr = oram_read bucket k in
23 let (occupied, _ , _) = curr in
24 let ret = mux occupied then curr else acc in
25 iterate ( level + 1) ret
26 in
27 let (occupied, _ , v) = iterate 0 ( default_block () ) in
28 (occupied, v)
29
30 val tree_write : tree_oram → key → pos → cldata → bool<S>
31 let tree_write t k p v =
32 let overflow_write = oram_write t[0] k (p, v) in
33 let overflow_evict = evict t in
34 overflow_write || overflow_evict

This API differs from the oram API above in several respects; Tree
ORAM can be used to implement full oram, as explained shortly.
The type pos is a randomly generated natural number that acts as a
position tag. Tree ORAM uses a position tag’s binary representa-
tion to uniquely determine a path through the tree. The function
tree_create n m creates a new Tree ORAM with Trivial ORAM buck-
ets of size m and a number of nodes n (assumed to be 2k − 1 for
some k > 0, ensuring a complete tree). Tree ORAM pairs up the
position tag (type pos) of a block with the client data (type cldata)
and store both in the underlying bucket. Figure 1 gives a graphical
representation of the Tree ORAM produced by tree_create 3 2 (on
which we build an oblivious stack in Section 2). Here, each Trivial
ORAM record is depicted vertically, with occupied bit occupied, key
key and data pos,next ,data.

The tree_read t k p function walks the path through the tree spec-
ified by the position tag, p, performing an oram_read at each node in
search of the key k. The mux construct on line 24 is just like an if
except that both branches are reduced to values before execution.1
This ensures obliviousness when the guard is a secret.2 Consider
our deployment scenario:While the untrusted server does not know
which block is returned, it does learn its position tag, based on the
path taken; this is why the type of tree_read’s third argument is nat,
not (secret-labeled) pos. We return to this point in the next section.

The tree_write t k p v simply writes the key, position tag, and
value provided to the root node of the tree: oram_write t[0] k (p, v).
Afterwards, a procedure called evict is invoked to randomly “push”
blocks down in the tree. The results in this paper hold for a variety
of eviction procedures; here is a simple one: evict randomly chooses
a block and pushes it down either left or right, depending on the
position tag in that block (indeed, evict is the only reason that
blocks include a position tag); evict also pushes a dummy block in
the opposite direction. In this way, blocks are always stored along
the appropriate path, but the adversary cannot tell which path that
is from observing the memory trace.

1In Darais et al. [2], λobliv includes a two-component mux which produces an in-
order tuple of both branches if the guard is true, swapping them otherwise. The one-
componentmux in this paper may be encoded by only binding the first component of
the result of the two-component mux: let (x , _) = mux(g, t , e) in ... .
2For example, the following is unsafe: if secret then (a [0]; () ) else ()

We can implement a full oram as a pair (o,m) where o is a tree_oram

and m is a position map, which maps keys to position tags. Because
the position map is the same size as the Tree ORAM, the position
map imposes an O(n) space overhead, which in our deployment
scenario is borne by the client. In particular, the Tree ORAM-based
oram_read (o,m) k operation first looks up m[k] to retrieve tag p for
k from the position map m; then it calls tree_read o k p to retrieve
the value from the (server-side) Tree ORAM. An oram_write (o,p) k

v generates a random position tag p, updates m[k] = p, and then
calls tree_write o k p v. In fact, oram_read follows the call to tree_read

with a call to tree_write , to put the value back in the ORAM at a
fresh location. (oram_write may call tree_read before calling tree_write ,
to match the address trace of oram_read.) While the adversary can
see the tag passed to tree_read, nothing is gleaned from it because it
is never reused.

To reduce the client-side space cost of using Tree-based ORAM
to a small constant, we can actually recursively store the position
map across a sequence of O(log(b)) Tree ORAMs, where b is the
number of bits in a pos.

1.3 Probabilistic Memory Trace Obliviousness
Both Trivial and Tree ORAM enjoy Probabilistic Memory Trace
Obliviousness (PMTO) [2]: for both, the distribution of adversary-
visible events is independent of any secrets (the keys and values)
they manipulate.

The type system of λobliv ensures that programs are PMTO by
enforcing the invariant that random numbers revealed to the adver-
sary are always uniformly distributed, conditioned on previously
revealed random numbers. A random number is generated via the
rnd expression, and is initially invisible to the adversary (like a nat<S

>). The random number may be revealed to the potential adversary
(i.e., made “public”) at most once, enforced by the type system using
affine types [4]. To add needed flexibility, a random number may
also be coerced to a (normal) nat<S> number, which may be freely
copied, but not revealed. To prevent such derived secret numbers
from being used to perturb the uniformity of distributions of ran-
dom numbers that have or will be revealed, the type system uses
a feature called probability regions. The snippet below shows an
example of a perturbation and how probability regions prevent it.

1 let sx , sy = flip , flip in
2 let sk = mux(castS(sx), sx , sy) in (∗ sk is non−uniform ∗)
3 let sz = mux(s, sk , flip ) in
4 ...

In this example, s is a secret we wish to protect. The flip construct
is exactly like rnd except that it produces a random boolean. Two
random booleans, sx and sy, are created on line 1. On line 2, we
use castS to coerce sx, which is of type flip into a bool<S>, so we can
multiplex on it. Doing so will bind sk to either sx or sy depending
on the value of sx. As such, sk is not uniformly distributed (it is
more likely true than false ). On line 3, we choose to bind sz to sk if s
is true and a fresh, uniformly distributed boolean otherwise. If we
were to reveal sz, the adversary could infer information about s; i.e.,
observing true means s is more likely to be true as well.

Probability regions in λobliv render a mux like the one that ap-
pears on line 2 as type-incorrect. On line 1, sx will be assigned some
probability region ρ1. Probability regions form a join semilattice



which aligns with probabilistic (in)dependnce according to an or-
dering ⊏. On line 2, the type rule for mux checks that the region of
the guard ρ1 is strictly less than both of the arguments, meaning
that they do not depend on it, probabilistically. In this case, since
the left branch is sx, we require ρ1 ⊏ ρ1 which does not hold. As
such, λobliv will reject this program as unsafe. For all the juicy
details of the λobliv type system and how it enforces the uniformity
invariant, see Darais et al. [2].

The PMTO property holds for Trivial and Tree ORAM despite
overflow. If a bucket fills up, a write to that bucket will have no
effect, and a subsequent lookupwill return the wrong answer.While
undesirable, overflow is not observable by the adversary, and so
PMTO of oram is not threatened. However, PMTO is compromised
by overflow in oblivious data structures, as we describe next.

2 OBLIVIOUS DATA STRUCTURES
What if we wanted to implement an oblivious version of a data
structure like a stack? For such a data structure, the visible address
trace should reveal nothing about the data structure’s contents nor
anything about the operations being performed on it (e.g., which
ones are pops vs. pushes). An easy way to do this is to store the
structure’s data in an oram, like a Tree ORAM, with a little meta-data
stored client-side, e.g., the head key of the stack. To hide pushes vs.
pops, one can (with a little effort) write the code to always perform
the same sequence of ORAM operations, e.g., an oram_read always
followed by an oram_write.

2.1 Tree ORAM-based Oblivious Data
Structures

While using a full oram can work, it is space-inefficient: an oram of
size n requires a position map of size n, even if the stack contains
only a few elements. Wang et al. [8] proposed a clever way to reduce
this overhead: Use a tree_oram, but replace the full ORAM’s complete
(size n) position map with one based on the data structure’s API. We
will generically refer to Wang et al.’s construction as an oblivious
data structure (ODS). For oblivious stacks, we have:
1 type cldata = rnd ∗ string <S>
2 type ostack = key ref ∗ rnd ref ∗ tree_oram
3
4 val empty : nat → nat → ostack
5 let empty n m = ( ref 0, ref rnd, tree_create n m)
6
7 val stackop : ostack → bool<S> → string <S> → string <S>
8 let stackop (head_key, head_pos, stack ) ispush v =
9 let hk = !head_key in
10 let hp = !head_pos in
11 if ispush then
12 (∗ Dummy read ∗)
13 let _ = tree_read stack 0 (castS rnd) in
14 let fresh = rnd in
15 let _ = tree_write stack hk (castS fresh ) (hp, v) in
16 let () = head_key := hk + 1 in
17 let () = head_pos := fresh in
18 " "
19 else
20 let (_ , (_ , (next , v) ) ) = tree_read stack (hk − 1) (castP hp) in
21 (∗ Dummy write ∗)
22 let _ = tree_write 0 (castS rnd) (rnd, " " ) in
23 let () = head_key := hk − 1 in
24 let () = head_pos := next in
25 v

An oblivious stack is a triple of a key, a (rnd) position tag, and a
Tree ORAM. The first two components form a size-1 position map
which points to the head of the stack (the only element a client

Figure 1: Visualizing an OStack after a push of "a" and then
two possible outcomes (either blue or red) of a push of "b".

can access via the stack API); the head’s key corresponds to the
length of the stack (so it starts as 0). The position maps of the non-
head stack elements are stored in the stack itself. In particular, type
cldata contains the client’s data in its second component, and the rnd
component of the next element’s position map in the first; the key is
the current element’s key, minus one. stackop takes a stack, a secret
boolean indicating either push or pop (ispush), and some client data.
If the operation is a push (ispush = true), stackop creates a new cldata

object containing the pushed data and the current head’s rnd tag
((hp,v) on line 15). It then calls tree_write with a fresh position tag and
new key to add the new object to the tree_oram; the new key is the old
head’s key plus one. Finally, it updates the current head to contain
the new key and tag. If the operation is a pop, stackop looks up the
head and returns the client data but also the pointer to the next
element in the stack (next on line 20), which becomes the new head.
The implementation of stackop ignores the overflow bit returned
by tree_write . Doing so matches the behavior described by Wang
et al. [8], which (we assume) aims to make an overflow adversary-
invisible, thereby preserving PMTO. As we show in this section,
ignoring overflow actually does the opposite, i.e., it compromises
PMTO. The stackop code uses an if expression for clarity. Since the
ispush variable is considered secret, a real implementation would
need to mux instead. See Darais et al. [2] for a full description of
stackop (including the version that uses mux), and pseudocode.

Figure 1 shows the configuration of an ODS stack after two
pushes. The pair head_key,head_pos are the pointer to the head of the
stack (we depict the position tag as either 1 or 0 since the figure
considers two possible executions for the second push; see below).
Each block in the Tree ORAM has the usual fields: the occupied
bit occupied, the key key, position tag pos, and client data cldata . The
first push generates a fresh position tag, which happens to be 0. We
add the block ( true , head_key, 0, (head_pos, "a" ) ) = ( true , 0, 0, (⊥, "a"))

to the Tree ORAM,3 and it is evicted left because its tag is 0. The
head_key is incremented, and head_pos is updated to 0. An identical
procedure describes the second push, but in Figure 1 we instead
show both possible outcomes for the fresh, random position tag,
p. Blue indicates the outcome p = 0 and red indicates p = 1. We add
the block ( true , head_key + 1, p, (head_pos, "b" ) ) = ( true , 1, p, (0, "b" ) ).
3Here, ⊥ represents a garbage next pointer, since there is no next element.



α β Pr(ρ = 0 | γ = 0) Pr(ρ = 1 | γ = 0)
0 0 0.5 0.5
0 1 0 1
1 0 1 0
1 1 0 1

Figure 2: Distribution of ρ conditioned on γ = 0.

The dashed arrows in Figure 1 indicate the bucket to which the
associated key and position tag refer, revealing the abstract linked-
list structure.

2.2 Tree ORAM-based Stack is not PMTO
Wewould expect ODSs to enjoy PMTO because the underlying Tree
ORAM is PMTO and ODS operations can be made oblivious. We
were surprised to find that this is not the case! The reason owes to
the possibility of overflow in the Tree ORAM. If we were to imple-
ment a stack on top of a full Tree ORAM, with a complete position
map, overflow will compromise correctness but not security. But
for an ODS, some of the stack’s metadata—in particular, the next

pointers to neighboring elements—is stored inside the Tree ORAM,
and that metadata can be corrupted on an overflow in a way that
affects the adversary-visible address trace.

To see how, consider the blue configuration in Figure 1. This Tree
ORAM configuration results from pushing "a" and "b" onto the stack
with position tags α and β respectively, with α = β = 0. The Trivial
ORAM associated with the left child is full. Consider the unlucky
situation in which the value "c" is pushed onto the stack with a
generated position tag, γ , of 0. The head_key and head_pos are updated
to 2 and 0 respectively but the block containing "c" is not added to
the underlying Tree ORAM due to overflow. If a pop operation is
executed, γ is revealed to the adversary and the position tag, ρ, will
be returned to the client. Under most executions, the client will be
returned "c" and the returned position tag will be ρ = β . However,
in the overflowing execution, the client will instead receive garbage.
The returned position tag is ρ = δ where δ is some fresh, uniform
position tag.

Figure 2 shows the distribution of ρ conditioned on the observa-
tion that γ = 0. For PMTO to hold, this distribution marginalized
over α and β needs to be uniform. In the first row, we see the over-
flow case. In this case, ρ = δ and since δ is a fresh, uniform tag
we see that ρ is zero or one with equal probability. In all other
cases, ρ = β . Since the outcome of γ does not affect the proba-
bility distributions of α or β , each row in the table occurs with
probability 1

4 . Therefore, when we marginalize over α and β we
have Pr (ρ = 1 | γ = 0) = 5

8 and Pr (ρ = 0 | γ = 0) = 3
8 . When

the next pop takes place, ρ will also be revealed to the adversary
(again, via tree_read), since it is assumed by the oblivious stack to
be the position tag of b. If the adversary observes γ = 0 and ρ = 1
(say), they know that it is (slightly) more likely that an overflow
took place. This observation of overflow leaks information about
the operations being performed on the data structure, which are
considered secret.

3 EXTENDING PMTO, AND λobliv
While λobliv’s type system accepts Trivial ORAM, Tree ORAM, and
recursive Tree ORAM—and thereby establishes they are PMTO—a

λobliv ODS stack fails to type check. We had previously thought [2]
this was due to a weakness in λobliv’s type system, but now it is
clear that the rejection is warranted: ODS stacks are not PMTO.

While ODSs do not enjoy PMTO, they almost do—if an ODS
does not overflow, it should satisfy PMTO. As such, one can reduce
the chances of a leak by sizing the ODS to be close to its client’s
working set size. Moreover, using a tree-based ORAM like Path
ORAM [7], which employs a kind of client-side cache, we can reduce
the chances of overflow still further. Both ideas are discussed in the
original ODS paper [8] (but not the problems with overflow).

We would like to formalize the idea of PMTO modulo overflow
and extend λobliv’s type system to enforce it. To do so, we would
add allowable declassifications [5] to λobliv which would be used
to declassify the result of the oram_write operations (which detect
overflow). The PMTO modulo overflow property is very similar to
gradual release [1], but lifted to distributions. Implementing this
in λobliv’s type system will be challenging. The actual overflow is
not the place in the code where the type checker currently fails
(which relates to the problem of creating a correlation between
random variables). We also wonder: what does “overflow” mean,
for general code (i.e., not ORAM)? Going further, we would like
to extend the new PMTO property and the type system with the
ability to reason quantitatively about the chances of overflow, and
thus connect the “statistical closeness” of an ODS’s distribution to
the uniform distribution of events. Doing so will require reasoning
about correctness properties of Trivial ORAM and Tree (or Path)
ORAM with regards to overflow.
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