
Verified Computation via Compilation to Abstract Machines
Ryan Estes

restes@uvm.edu

University of Vermont

David Darais

darais@galois.com

Galois, Inc.

Joseph P. Near

jnear@uvm.edu

University of Vermont

ABSTRACT
Verified computation techniques enable the construction of zero-

knowledge proofs that an output was computed by a particular

program—without revealing the program’s input. Existing tech-

niques work by converting programs into circuits or constraints,

which makes dealing with control flow challenging. We present

a new approach that compiles the program to a specialized ab-

stract machine that contains no control flow and is particularly

well-suited to zero-knowledge proof.

1 INTRODUCTION
Verifiable computing [3] has the goal of offloading computation

to an untrusted third party, while maintaining the ability to verify

that the computation has been performed correctly. Techniques

for verifiable computing often rely on zero-knowledge proofs [4],

which allow a prover to convince a verifier that the prover knows a
(secret) witness𝑤 such that 𝑓 (𝑤) = 𝑜—without revealing𝑤 .

Zero-knowledge protocols typically require converting the func-

tion 𝑓 to a circuit or set of constraints. Two main approaches have

been proposed for this: (1) compile the program into a circuit [5], or

(2) manually design a circuit that implements a CPU with a limited

instruction set, and compile the program into instructions for this

CPU [1]. Option (1) makes control flow challenging—since circuits

do not support control flow natively—and option (2) often results

in circuits that are too large for real programs.

We present a new approach that combines the best properties of

both options. Our approach compiles a program written in a high-

level language called WizPL into a specialized abstract machine
whose set of operations is tailored to the program. The resulting

abstract machine has no control flow, so it can be efficiently repre-

sented in zero-knowledge proof systems.

2 THE WIZPL COMPILER
The architecture of our compiler appears in Figure 1. The goal of

this architecture is to produce an abstract machine for an input

program with the smallest possible set of operations, while also

keeping each operation simple and minimizing the number of steps

needed to execute the program.

Most of the steps in our compiler are standard—we first perform

a continuation-passing style transformation, then a closure conver-

sion step. The third step—defunctionalization [2]—is not used in

compilers for real hardware. This step transforms functions into
data, effectively encoding each of the program’s functions as an op-

eration type in the abstract machine. The example WizPL program

below implements the factorial function, and runs it on a secret

input of 5 (the secret keyword denotes witness values).

fact n = if n == 0 w = secret 5
then 1 main () = fun () => fact w
else n * (fact (n - 1))

Figure 1: Architecture of the WizPL Compiler

TheWizPL compiler transforms the factorial program into an

abstract machine with 6 operations; the complete abstract machine,

written as a C program, is available in Figure 2 in the Appendix.

The resulting abstract machine has no control flow, but relies

heavily on random-access memory (encoded using store and load
operations in the code of Figure 2). RAM operations are encoded

in zero-knowledge proof systems by recording a complete mem-

ory trace of the program’s execution, and constructing consistency
checks in the circuit representation of the program that ensure reads

and writes are consistent with the memory trace.

Since WizPL programs are functional, our abstract machines

never re-use memory locations, and a memory trace in our setting

can be built by simply dumping the contents of memory at the end

of the program’s execution. This simplifies the encoding of memory

operations in the zero-knowledge proof system, since we only need

read-only memory.

3 CONCLUSION & OPEN CHALLENGES
Our approach enables compiling high-level programs with control

flow, recursion, and user-defined data structures into abstract ma-

chines that can be efficiently represented in zero-knowledge proof

systems. Our initial results suggest that this approach is more effi-

cient than either of the two options mentioned in the introduction.

We believe that significant improvements can be made by op-

timizing the tradeoff between the number and complexity of op-

erations. The complete set of operations must be encoded in the

resulting circuit; more complex operations results in a larger circuit

for each step of the abstract machine’s execution, but potentially

allows the machine to finish in fewer steps; exploring this tradeoff

remains future work.



Ryan Estes, David Darais, and Joseph P. Near

for (unsigned int i = 0; i < 19; ++i) {
int tag = load(state_f) + (case_id * 65536);
case_id = 0;
switch (tag) {
case O_F2:

new_f = store(O_halt);
new_a0 = state_a0;
break;

case O_F0:
T0 = load(state_f + 2) * state_a0;
new_f = load(state_f + 1);
new_a0 = T0;
break;

case 65536:
T0 = store(O_F0);
store(state_a1);
store(state_a2);
T1 = state_a2 - 1;
new_f = state_a0;
new_a0 = T1;
new_a1 = T0;
break;

case 65537:
new_f = state_a1;
new_a0 = 1;
break;

case O_F1:
T0 = state_a0 == 0;
new_f = store(T0);
case_id = 1;
new_a0 = load(state_f + 1);
new_a1 = state_a1;
new_a2 = state_a0;
break;

case O_main:
T0 = store(O_F1);
store(T0);
T1 = store(O_F2);
new_f = T0;
new_a0 = W_0;
new_a1 = T1;
break;

}

state_f = new_f;
state_a0 = new_a0;
state_a1 = new_a1;
state_a2 = new_a2;

}

int result = state_a0;

Figure 2: Complete abstract machine for factorial.

REFERENCES
[1] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.

Snarks for c: Verifying program executions succinctly and in zero knowledge. In

Annual cryptology conference, pages 90–108. Springer, 2013.
[2] Olivier Danvy and Lasse R Nielsen. Defunctionalization at work. In Proceedings

of the 3rd ACM SIGPLAN international conference on Principles and practice of
declarative programming, pages 162–174, 2001.

[3] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable

computing: Outsourcing computation to untrusted workers. In Annual Cryptology
Conference, pages 465–482. Springer, 2010.

[4] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but

their validity or all languages in np have zero-knowledge proof systems. Journal
of the ACM (JACM), 38(3):690–728, 1991.

[5] Riad S Wahby, Srinath TV Setty, Zuocheng Ren, Andrew J Blumberg, and Michael

Walfish. Efficient ram and control flow in verifiable outsourced computation. In

NDSS, 2015.


	Abstract
	1 Introduction
	2 The WizPL Compiler
	3 Conclusion & Open Challenges
	References

