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ABSTRACT
Static program analysis tools can automatically prove many useful

properties of programs. However, using static analysis to prove to a

third party that a program satisfies a property requires revealing the

program’s source code. We introduce the concept of zero-knowledge
static analysis, in which the prover constructs a zero-knowledge

proof about the outcome of the static analysis without revealing
the program. We present novel zero-knowledge proof schemes for

intra- and inter-procedural abstract interpretation. Our schemes

are significantly more efficient than the naive translation of the cor-

responding static analysis algorithms using existing schemes. We

evaluate our approach empirically on real and synthetic programs;

with a pairing-based zero knowledge proof scheme as the backend,

we are able to prove the control flow analysis on a 2,000-line pro-

gram in 1,738s. The proof is only 128 bytes and the verification time

is 1.4ms. With a transparent zero knowledge proof scheme based

on discrete-log, we generate the proof for the tainting analysis on a

12,800-line program in 406 seconds, the proof size is 282 kilobytes,

and the verification time is 66 seconds.
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1 INTRODUCTION
Static program analysis tools are designed to automatically prove

properties of programs. Abstract interpretation [28–33] is a widely-

used framework for static program analysis; it has been used to

verify complex properties in real programs [26, 34, 36, 40, 45, 55,

59, 63–65]. For example, Astrée [34] has been used to verify critical

software for aircraft and spacecraft.

Static analysis tools operate on a program’s source code, so prov-

ing to a third party that a program has a specific property via static

analysis requires revealing its source code to the third party. This

requirement limits the application of static analysis tools in set-

tings that involve proprietary or otherwise secret algorithms. For

example, a credit-scoring company might develop a proprietary

scoring algorithm, and want to demonstrate that the algorithm does

not discriminate on the basis of race, gender, or other attributes

protected by law.
1
A taint analysis, easily implemented via abstract

interpretation, might be used to demonstrate that the algorithm ig-

nores these factors when generating a score—but the results cannot

be checked by a third party unless the source code is made public.
This paper introduces zero-knowledge static analysis, an approach

that allows an untrusted party to prove that a program has a prop-

erty without revealing the program. Recent privacy regulations in-

clude a number of important requirements on algorithms for pro-

cessing data; with zero-knowledge static analysis, organizations

will be able to prove compliance of their algorithms without reveal-
ing the algorithms. For example, a taint analysis can be used to prove
that consent is obtained before processing data or pseudonyms are

used in place of identifying information (to comply with GDPR [5]

and COPPA [3]), that Personal Health Information is redacted (to

comply with HIPAA [6]), and that exercise of privacy rights does

not result in discrimination (to comply with CCPA [2]). A control-
flow analysis can be used to prove that the program produces proper

audit logs and that pseudonymization is performed correctly (to

comply with GDPR). Each of these examples represents a large

class of properties that are provable with zero-knowledge static

analysis for all possible executions of the secret program. In addition

to demonstrating compliance to regulators, organizations can use

the proofs to build trust with the public.

With zero-knowledge static analysis, we envision the applica-

tions in practice with the following three steps:

(1) The owner of the program commits to a program 𝑃 and posts

the commitment to the public.

1
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(2) The owner can then prove some properties of 𝑃 via our

zero-knowledge static analysis scheme (e.g. it does not dis-

criminate) without revealing the source code of 𝑃 .

(3) Finally, using schemes of zero-knowledge program execu-

tion [1, 16, 22], the owner can further proves that executing

the same program 𝑃 on some (public or previously commit-

ted) input produces a particular output.

In addition to the discrimination example, other useful applica-

tions of zero knowledge static analysis include proving the worst

case execution bounds of a program, absence of runtime exceptions,

absence of security vulnerabilities related to unsafe memory ac-

cess (e.g., Heartbleed), or absence of security vulnerabilities due to

timing channels (e.g., Spectre [51] and Meltdown [52]).

Zero-knowledge static analysis can also be used to prove the pos-
sible presence of a bug in a program. There are two ways to demon-

strate that a program is likely to have a bug in zero-knowledge:

(1) provide a secret input that leads to unexpected behaviors of a

program [43], and (2) show that a reasonably precise static analysis

for proving the absence of bugs fails. In the first approach, a coun-

terexample can guarantee the presence of a bug, but it is not always

easy or possible to find such an input. For example, if a program

does not comply with differential privacy [35], one cannot find

a counterexample to prove it. Instead, our technique can be used

in this case to demonstrate that the program is very likely to not

have the property of interest through static analysis, where a more

precise analysis makes for stronger evidence than an imprecise one.

Static analysis algorithms are not easily translated into ZKP sys-

tems. Recent work in ZKP has resulted in many efficient systems

capable of proving arbitrary functions modeled as arithmetic or

boolean circuits. Unfortunately, static analysis is typically carried

out using stateful algorithms, which are not easily translated di-

rectly into circuits. Alternatively, we could translate static analysis

algorithms into circuits using existing RAM-based zero-knowledge

proof schemes [14, 16, 21, 22, 66, 73] that model the public function

as a program in the random-access-memory (RAM) model. How-

ever, they usually introduce a high overhead for each instruction

in the program (see related work for more details).

1.1 Our Contributions
In this paper, we initiate the study of zero-knowledge static analysis

and propose several efficient schemes based on abstract interpreta-

tion and worklist algorithms. In particular, our contributions are:

• Zero-knowledge intra-procedure analysis. First, we intro-

duce a simple imperative programming language with assign-

ments, branches, loops and memory operations. We propose an

efficient zero-knowledge proof scheme for the classic worklist

algorithm for abstract interpretations on programs written in

our programming language. The prover time of our scheme is

𝑂 (𝑇 · 𝑣 +𝑇 log𝑇 ) where 𝑣 is the number of variables in the pro-

gram and 𝑇 is the number of iterations in the worklist algorithm.

This is asymptotically optimal up to a logarithmic factor com-

pared to the plain worklist algorithm without zero-knowledge.

We apply several important techniques in the literature of RAM-

based ZKP such as memory checking and set relationships to

construct building blocks of our scheme efficiently.

• Zero-knowledge inter-procedure analysis. Second, we ex-

tend our scheme to support inter-procedure analysis with func-

tion calls. To address new challenges of loops with dynamic sizes,

we efficiently realize linked-list operations as a circuit, and apply

techniques of loop merge from existing work [66]. The prover

time of our zero-knowledge inter-procedure analysis remains

𝑂 (𝑇 · 𝑣 +𝑇 log𝑇 ), where 𝑣 now denotes the maximum number

of variables in a function.

• Implementation and evaluations. Finally, we implement our

zero-knowledge abstract interpretation schemes and evaluate

their performance on both real and synthetic programs. As shown

in the experiments, we are able to prove the result of the tainting

analysis on a program with 12,800 lines of code. It only takes 406s

to generate the proof. The proof size is 282KB and the verifier

time is 66s. With a different backend in [42], we are able to prove

the control flow analysis on a 2,000-line program in 1,738 s, where

the proof is only 128 bytes and the verification time is only 1.4ms

1.2 Related Work

Static analysis and abstract interpretation. Static program anal-

ysis tools are typically classified as sound or unsound. Sound tools

are capable of proving that a program does not contain bugs; un-

sound tools typically attempt to find as many bugs as possible, but

provide no guarantees on the absolute presence or absence of bugs

(i.e., there may be both false positives and false negatives). Unsound

tools include syntactic bug finders like Lint and FindBugs.

The class of sound static analyses includes data flow analyses,

(sound) symbolic execution techniques, abstract interpretation, the-

orem proving, and others. Data flow analyses [46–48] are often

used in compilers, as part of optimizations to produce more effi-

cient code. Symbolic execution [50] executes the target program

with symbolic input (rather than concrete values), and solves con-

straints over those symbols whenever conditionals are encountered.

Symbolic execution is typically used to determine whether or not

it is possible to reach a particular state in the program. Theorem

proving techniques often involve manual proof development by the

programmer, aided by an automated proof assistant [38, 44].

In this work, we focus on a static analysis approach called ab-
stract interpretation [28–33], which is widely used as a foundational

framework for both designing program analysis algorithms and

proving their soundness. Abstract interpretation-based tools have

been used successfully to verify the absence of runtime exceptions

in C, C++ and Java programs [34, 59, 65], verify the absence of buffer

overruns in C programs [45], verify tight bounds for worst-case

execution in real-time systems [36], verify the absence of floating

point rounding errors in C and assembly programs [40], verify ter-

mination and liveness properties of C programs [26], and compute

control flow analysis of higher order functional programs [55, 63]—

among hundreds of other applications. In particular, the Astrée

tool [34] is well known for its industrial applications, such as its

use in verifying the flight control software of the Airbus A340 and

A380 fly-by-wire systems, and the automatic docking software of

the Jules Vernes ATV, the first robotic cargo spacecraft used to

transport supplies to the International Space Station. We refer the

reader to two canonical references [28, 56] for further technical

background on abstract interpretation.



Zero-knowledge proofs. The notion of zero-knowledge proofs

was first proposed in the early work of Goldwasser et al. in [39]. The-

oretical constructions based on probabilistically checkable proofs

were introduced in the seminal work of Kilian [49] and Micali [54].

In recent years there is significant progress in constructing effi-

cient ZKP protocols that can be realized in practice. There are

ZKP schemes based on bilinear pairing [17, 25, 27, 37, 42, 53, 57],

discrete-log [12, 19, 23, 41], hashing [20], interactive oracle proofs

(IOP) [11, 13, 15, 25, 70] and interactive proofs [61, 67, 69, 71, 72].

Their security relies on different assumptions and models, and they

provide trade-offs between prover time and proof size. In our con-

struction, we choose to use [42] and [61] as our backend, but our

frontend is also compatible with other circuit-based ZKP schemes.

Most ZKP schemes model the computations as arithmetic cir-

cuits, while the abstract interpretation algorithms are naturally

in the RAM model with dynamic loops, branches and memory

operations. Several papers [14, 16, 21, 22, 66, 73] proposed ZKP

schemes for RAM programs. These schemes propose universal

RAM-to-circuit reductions to compile any RAM program to arith-

metic circuits. However, the heavy machinery introduces a high

overhead on the size of the circuit. E.g., the cost is around 4000 gates

per RAM instruction in the reduction of [16]. Instead, we utilize

several key techniques in these schemes, without going through

the full RAM-to-circuit reductions. Among these RAM-based ZKP

schemes, the scheme in [66] first compiles the RAM program to a

program-specific circuit, then applies a circuit-based ZKP backend.

In Section 6.2, we compare the performance of our scheme with the

circuits automatically generated by the scheme in [66] and show

that our design improves the circuit size by around 35–40×.

2 PRELIMINARIES
We use negl(·) : N→ N to denote the negligible function, where

for each positive polynomial 𝑓 (·), negl(𝑘) < 1

𝑓 (𝑘) for sufficiently

large integer 𝑘 . Let 𝜆 denote the security parameter.

2.1 Zero-knowledge Arguments
A zero knowledge argument scheme is a protocol between a prover

P and a verifier V , where at the end of the protocol, V is con-

vinced by P that the result of a computation 𝐶 on a public input

𝑥 and prover’s secret witness𝑤 is 𝑦 = 𝐶 (𝑥,𝑤). A zero knowledge

argument has (1) correctness:V always accepts if the result and the

proof are honestly computed by P; (2) soundness:V rejects with all

but negligible probability if the result is not correctly computed; (3)

zero knowledge: the proof leaks no information about the witness

𝑤 beyond the fact the 𝐶 (𝑥,𝑤) = 𝑦. We give the formal definitions

of zero knowledge arguments in Appendix A.

2.2 Instantiating Abstract Interpretation
Abstract Interpretation Fundamentals.When applyingAbstract

Interpretation, one begins with a ground-truth semantics for pro-

grams 𝑝 , commonly encoded as a partial function S𝑝 ∈ state ⇀

state where 𝜎 ∈ state is some semantic domain for intermediate

execution states. For example, the program 𝑝 could be encoded

as map from program labels to statements, and the state of the

program could include the current program label to execute, as

well as a map from program variables to their current values. This

transition function S𝑝 can be iterated from an initial configuration

𝜎0 ∈ state to a final state 𝜎𝑛 ∈ S𝑛𝑝 (𝜎0) (for some number of steps

𝑛), and where 𝜎𝑛 is called final iff S𝑝 (𝜎𝑛) is not defined.
From this “ground truth” semantics, a collecting semantics is

derived C𝑝 ∈ ℘(state) → ℘(state) which re-characterizes the

semantics to transform properties (i.e., sets) of states as opposed

to discrete states. This collecting semantics establishes a ground

truth for asking questions like “when given an initial state where

variable 𝑥 is negative, does the program result in a state where 𝑥 is

positive?” The collecting semantics is a specification and in general

is not computable. A program analysis algorithm then inhabits

A𝑝 ∈ state
♯ → state

♯
for some abstract semantic domain state

♯
,

andmust be shown soundw.r.t. the collecting semantics C𝑝 . The full
analysis is computed (naively) as the smallest solution (i.e., the least

fixpoint) to the equation 𝑋 = 𝑋 ⊔ A𝑝 (𝑋 ) ⊔ 𝛼 (𝜎0), which soundly

approximates (by construction) any final state so long as A𝑝 is

sound. Although analysis algorithms A𝑝 are typically designed

in an ad-hoc manner, the abstract interpretation framework can

also be used to systematically derive the analysis algorithm itself,

yielding an analyzer which is correct by-construction; this is often

referred to as the calculational method [28].

The analysis algorithm A must operate over an abstract do-
main—often annotated with a “sharp” (

♯
)—and must form an order-

theoretic lattice in addition to a Galois connection with sets of con-

crete states. Computability of the analysis—i.e., the least fixpoint of

the equation 𝑋 = 𝑋 ⊔ A𝑝 (𝑋 ) ⊔ 𝛼 (𝜎0)—is predicated on either the

abstract domain being finite, or the use of a widening operator ∇
to ensure there are no “infinite ascending chains” while computing

the analysis.

In general, a Galois connection between lattices 𝐴—called the

concrete domain—and 𝐵—called the abstract domain—consist of

two mappings 𝛼 ∈ 𝐴 → 𝐵—called the abstraction function—

and 𝛾 ∈ 𝐵 → 𝐴—called the concretization function—such that

𝑥 ⊑𝐴 𝛾 (𝑦) ⇐⇒ 𝛼 (𝑥) ⊑𝐵 𝑦; Galois connections are notated

𝐴 −−−→←−−−𝛼
𝛾

𝐵. When the context is unambiguous, we omit subscripts

to abstraction and concretization functions 𝛼 and 𝛾 , partial order-

ing ⊑, and lattice operations ⊔. The Galois connection for state
♯

is then notated ℘(state) −−−−−−→←−−−−−−
𝛼state

𝛾state
state

♯
, and the correspondence

becomes 𝑅 ⊆ 𝛾 (𝑟 ♯) ⇐⇒ 𝛼 (𝑅) ⊑ 𝑟 ♯ where 𝑅 ∈ ℘(state),
𝑟 ♯ ∈ state

♯
, the lattice over the concrete domain is the power-

set lattice, and ⊑ is a custom-defined partial order for the lattice

associated with the abstract domain state
♯
. Abstract states state

♯
of-

ten include an environment env
♯ ≜ var→ val

♯
mapping program

variables to values, and an abstract domain for values val
♯
such that

℘(val) −−−−−→←−−−−−
𝛼val

𝛾val
val

♯
. A program analysis algorithmA is then sound

when any of the following equivalent (under assumption of Galois

connection laws) statements are true: (1): 𝛼 (C𝑝 (𝛾 (𝑟 ♯))) ⊑ A𝑝 (𝑟 ♯);
(2): C𝑝 (𝛾 (𝑟 ♯))) ⊆ 𝛾 (A𝑝 (𝑟 ♯)); (3): 𝛼 (C𝑝 (𝑅)) ⊑ A𝑝 (𝛼 (𝑅); or (4):
C𝑝 (𝑅) ⊆ 𝛾 (A𝑝 (𝛼 (𝑅))).

Forming aGalois connection isn’t strictly necessary for soundness—

it merely shows that the abstract domain is “tight”. Calculational

methods make great use of the Galois connection, and completing

a soundness argument using only the 𝛾 side of the connection (the



second statement above) is commonly referred to as the “𝛾-only”

framework [58].

Soundness means that the behavior of any concrete run of the

program is guaranteed to be approximated by the analysis results.

Verification is achieved when the analysis result does not contain

any unwanted behavior, i.e., if the analysis result does not include,

say, buffer overflows, then we know it is impossible for a buffer

overflow to occur when running the program. However, false posi-

tives are possible: if the analysis result says the result may contain

a buffer overflow, there is a possibility that the program is free of

buffer overflows, but the analysis is not precise enough to detect it.

Our Instantiation of Abstract Interpretation. In this work, we

implement in zero-knowledge the following instantiation of the ab-

stract interpretation framework: a small imperative language with

conditionals andwhile loops, as well as an extension to the language

which includes toplevel functions; a worklist-based flow-sensitive

analysis algorithm which relies on control flow information; and

instantiations of the worklist-based algorithm for interval analysis,

taint analysis and control flow analysis.

As noted previously, analysis results are naively computed as

the least fixpoint of the equation 𝑋 = 𝑋 ⊔ A𝑝 (𝑋 ) ⊔ 𝛼 (𝜎0), using
the abstract transfer function A𝑝 , initial state 𝜎0, and abstraction

function 𝛼 . There are two practical matters missing from this sim-

ple characterization of computing analysis results. First, there are

several orthogonal notations of “sensitivity” in program analysis,

such as flow sensitivity, object sensitivity, context sensitivity, etc..

Incorporating each of these vectors typically amounts to appropri-

ately altering the definition of state
♯
to include extra information,

yielding more precision at the expense of a more computationally

costly analysis. Second, when implemented directly, this computa-

tion is overly naive, e.g., this approach may re-analyze the entire

program multiple times when its only necessary to re-analyze a few

statements. As for the first practical matter, most analyses adopt at

the very least flow sensitivity, as the precision gained vs efficiency

lost is nearly always desirable. As for the second practical matter,

most analyses are split into two phases: (1) compute a control-flow

graph for statements in the program, and (2) using this control-flow

graph, compute the analysis property of interest.

We therefore adopt a flow-sensitive and control-flow worklist-
based algorithm, displayed as Algorithm 1, and which we have

drawn nearly directly from a standard textbook on program analy-

sis design by abstract interpretation [56]. The algorithm operates

conceptually over an abstract domain of states defined state
♯ ≜

℘(loc) × (loc → env
♯) where abstract environments are defined

env
♯ ≜ var → val

♯
and for some abstract domain of values

val
♯
. That is, at any given state of abstract execution, there is a

set of program locations to execute next, and a global matrix of

abstract values for each pair of program location and program

variable. We adopt a set-based notation for the function space

𝑆 = {𝑠𝑙 }𝑛𝑙=1 ∈ loc → env
♯
, and its applications 𝑠𝑙 ∈ env

♯
for

the abstract environment at location 𝑙 .

A common optimization is to split this (hypothetical) transfer

function A𝑝 ∈ state
♯ → state

♯
in two: CFG𝑝 ∈ loc → ℘(loc) as

a statically determined over-approximation of control flows, and

A𝑝,𝑙 ∈ loc×env♯ → env
♯
as an update to the abstract environment

Algorithm 1 Worklist Algorithm

Input: A program 𝑝 , control flow graph CFG𝑝 , transfer function

A𝑝,𝑙 , and lattice val
♯
.

Output: Abstract environment at each line {𝑠𝑙 }𝑛𝑙=1.
1: Init 𝑠𝑙 (𝑥) := ⊥

val
♯ for all 𝑙 and 𝑥 .

2: Init queue:𝑊 := {(𝑙, 𝑙 ′) | 𝑙 ′ ∈ CFG𝑝 (𝑙)}.
3: while𝑊 ≠ ∅ do
4: (𝑙, 𝑙 ′) =𝑊 .𝑝𝑜𝑝 ()
5: if A𝑝,𝑙 (𝑠𝑙 ) /⊑ 𝑠𝑙 ′ then
6: 𝑠𝑙 ′ = 𝑠𝑙 ′ ⊔ A𝑝,𝑙 (𝑠𝑙 )
7: for all 𝑙 ′′ follows 𝑙 ′ do
8: 𝑊 .𝑝𝑢𝑠ℎ(𝑙 ′, 𝑙 ′′)
9: return 𝑆 = {𝑠𝑙 }𝑛𝑙=1

env
♯
which (abstractly) interprets the program at location 𝑙 ; in the

analysis algorithm, A𝑝,𝑙 is always applied to the environment 𝑠𝑙 .

Note that CFG𝑝 is easily lifted to sets of locations 𝐿 ∈ ℘(loc) via⋃
𝑙 ∈𝐿 CFG𝑝 (𝑙). The final analysis result {𝑠𝑙 }𝑛𝑙=1 is then recursively

specified as 𝑠fin
𝑙

=
⊔

𝑙 ′ |𝑙 ∈CFG𝑝 (𝑙 ′) A𝑝,𝑙 ′ (𝑠𝑙 ′); the algorithm we im-

plement efficiently computes the smallest solution to the set of

recursive equations generated by 𝑠fin
𝑙

for each program location 𝑙 .

Concretely, Algorithm 1 takes as input a control flow graph of the

program CFG𝑝 and initializes a control flow queue𝑊 ∈ ℘(loc×loc)
as𝑊 = {(𝑙, 𝑙 ′) | 𝑙 ′ ∈ CFG𝑝 (𝑙)}, i.e., all control flows. The abstract
environment is initialized as 𝑠𝑙 (𝑥) B ⊥ for all program variables

𝑥 and for the bottom element of the abstract value lattice ⊥. For a
straightline program,𝑊 has a simple definition mapping locations

to their successor:𝑊 (𝑙) ≜ {𝑙 + 1}. For a program with a while loop,

𝑊 will associate the line before the loop to both the first line of

the loop and the first line after the loop, and associate the last line

of the loop with the first line of the loop and the first line after

the loop. For programs with functions,𝑊 encodes the control flow

graph of function call and return edges.

The algorithm iterates over all control flows using a queue, up-

dating 𝑠𝑙 ′ to 𝑠𝑙 ′ ⊔ A𝑝,𝑙 (𝑠𝑙 ) (line 6); this updates the analysis results
at location 𝑙 ′ to include new information, e.g., due to a new anal-

ysis result at location 𝑙 . If the update leads to a new value for 𝑠𝑙 ′ ,

then we must re-analyze all program points which are influenced

by program point 𝑙 ′, so we add flows (𝑙 ′, 𝑙 ′′) to the worklist for

𝑙 ′′ ∈ CFG𝑝 (𝑙 ′) (lines 5, 7 and 8). When instantiated to abstract

domains with infinite ascending chains (such as interval analysis),

the join operation ⊔ in Algorithm 1 at line 6 is replaced with a

widening operator ∇ which approximates ⊔ while avoiding infinite

ascending chains. In practice, and for interval analysis, this amounts

to approximating ( [1, 2] ⊔ [1, 3]) ⊔ [1, 4] = [1, 3] ⊔ [1, 4] = [1, 4]
as ( [1, 2] ∇ [1, 3]) ∇ [1, 4] = [1,∞] ∇ [1, 4] = [1,∞], i.e., it forces
early convergence of the upper bound to∞.

Unique Properties of Abstract Interpretation for ZK. Many

applications of zero-knowledge are able to exploit structural or alge-

braic properties of algorithms to achieve efficiency gains. In general,

such insights arise from the observation that checking 𝑦 = 𝑓 (𝑥)
need not always compute 𝑓 (𝑥), e.g., one can instead check 𝑓 −1 (𝑦) ∋
𝑥 . The framework of abstract interpretation prescribes an algorith-

mic approach based on computing least fixpoints of recursively de-

fined equations, such as 𝑠fin
𝑙

=
⊔

𝑙 ′ |𝑙 ∈CFG𝑝 (𝑙 ′) A𝑝,𝑙 ′ (𝑠𝑙 ′) in the case



of our particular worklist algorithm, or 𝑋 = 𝑋 ⊔A𝑝 (𝑋 ) ⊔ 𝛼 (𝜎0) in
general. Computing the least solution is computationally expensive,

and encoded as an iterative process, starting from the ⊥ element

of the lattice, and applying the equations successively until the

solution stabilizes on a result.

However, checking that a proposed solution is larger or equal to
the least fixpoint is simple and can be computed in one step without

any iteration. This insight applies to zero-knowledge applications of

abstract interpretation where the prover wants to show the absence

of bugs in a secret program: it suffices to present any solution to

the equation (it need not be the smallest) so long as the solution

demonstrates the absence of bugs. The prover will likely discover

this solution through the iterative least fixpoint algorithm, but they

can do this privately and without the use of cryptography.

On the other hand, if the prover wants to show that a program

analysis flags a secret program as potentially having a bug, the en-

tire least fixpoint computation must be executed in zero-knowledge.

That is, to be convinced that the program has a bug, the verifier

must be convinced that the best possible analysis of the program

(i.e., the least fixpoint) is insufficient to verify the absence of bugs.

Because no better solution exist (a property of the least solution),

the verifier knows the prover did not present an unnecessarily

over-approximate result.

Most applications of zero-knowledge abstract interpretation will

likely be of the first form, where the prover wants to demonstrate

the absence of bugs in a program, and the verifier will be satisfied by

merely checking the solution is some fixpoint, and not necessarily

the least one. However, the algorithm to just check the solution to

the fixpoint—rather than compute it—is realized easily as a small

modification to Algorithm 1. Therefore, because the checking al-

gorithm is a simple refinement of the fixpoint-finding algorithm

(in both application and algorithmic description) we focus on the

full fixpoint-finding algorithm throughout this paper for the sake

of completeness. We discuss the implementation-specific details of

the refined algorithm and its tradeoffs in Appendix 5.

3 ZERO-KNOWLEDGE ABSTRACT
INTERPRETATION

Motivated by the applications mentioned in the introduction, we

are working in the following model. The prover owns a secret

program. She commits to the program at first, and then later engage

in a zero-knowledge proof to convince the verifier the presence or

absence of some bugs in the program via abstract interpretation.

We assume that the algorithm of the static analysis is public to

both the prover and the verifier. The verifier is able to validate the

correctness of the result of the analysis through zero knowledge

abstract interpretation, while the program of the prover remains

confidential during the protocol.

Formally speaking, let F be a finite field, 𝑝 be a secret program

with 𝑛 lines and𝑚 flows. Suppose the prover and the verifier agree

on an abstract interpretation, which is described by a lattice val
♯
,

transfer functions A𝑝,𝑙 , a worklist algorithm Alg, and a final cal-

culation 𝑔. 𝑔(Alg(𝑝, val♯,A𝑝,𝑙 )) ∈ {0, 1} indicates the presence or
absence of bugs. A zero-knowledge abstract interpretation (zkAI)
scheme consists of algorithms:

• pp← zkAI.G(1𝜆): given the security parameter, the algorithm

generates the public parameter pp.
• com𝑝 ← zkAI.Commit(𝑝, pp): the algorithm commits to the

secret program 𝑝 . We omit the randomness here.

• (𝑦, 𝜋) ← zkAI.P(𝑝, (val♯,A𝑝,𝑙 ,Alg, 𝑔), pp): the prover runs Alg
over 𝑝 to get a sound analysis result 𝑆 , runs 𝑔 over 𝑆 to obtain the

result 𝑦 of the analysis, and generates the corresponding proof 𝜋 .

• {1, 0} ← zkAI.V(com𝑝 , (val♯,A𝑝,𝑙 ,Alg, 𝑔), 𝑦, 𝜋, pp): the verifier
validates the claim about the program with parameters of the

analysis (val♯,A𝑝,𝑙 ,Alg, 𝑔), and the proof 𝜋 .

A zkAI scheme also has the properties of correctness, soundness

and zero-knowledge as generic zero-knowledge proofs. We give

the formal definitions in Appendix B.

3.1 Program Representation
The general idea to construct a zero-knowledge abstract interpre-

tation scheme is as follows. In the beginning, the prover sends

the committment com𝑝 of a program 𝑝 to the verifier. After re-

ceiving (val♯,A𝑝,𝑙 ,Alg, 𝑔) from the verifier, the prover computes

the analysis result 𝑆 and the corresponding witness 𝑤 for prov-

ing 𝑔(Alg(𝑝, val♯,A𝑝,𝑙 )) = 1. We treat it as some relationship

R = ((𝑐𝑜𝑚𝑝 , val
♯,A𝑝,𝑙 ,Alg, 𝑔);𝑤) in Definition 1. Then the verifier

and the prover invoke the backend zero-knowledge proofs protocol

to verify the relationship R without leaking any information of 𝑝 .

At the beginning of our zkAI scheme, in order for the prover to

commit to the secret program, we need an arithmetic representation

of the program. Therefore, we first introduce our programming

language towork on, and then describe its arithmetic representation.

We choose towork on a simple language used in [56], instead of ones

such as Java or C++ to avoid language-specific details. However,

our zero-knowledge proof scheme does not lose generality because

the language is still expressive enough. It is Turing-complete, and

languages such as Java and C++ can be compiled to it.

Our Programming Language.We choose to start with a specific

imperative programming language as shown in Figure 1. In this

language, a program is composed of many statements, and each

statement can be either an assignment, a branch, or a loop
2
. 𝑎

denotes an expression, and it may be a variable 𝑥 , a constant 𝑛,

a unary expression 𝑜𝑝1 and a binary expression 𝑜𝑝2. The value

of a variable can be either integers or booleans, and thus we use

logical operators 𝑎𝑛𝑑 |𝑜𝑟 |𝑛𝑜𝑡 and mathematical operators +| − | ∗ |/
in our language. We will extend this to incorporate function calls

in Section 4 as they are common in programming languages even

though doing so will not change the expressiveness.

Arithmetic Representation. Then we describe how to convert

the program to an arithmetic representation. We choose to use table

structures to represent the whole program. Details are shown in

Table 1. For each type of statements,

(1) A unique ‘Stmt Code’ is assigned.

(2) The ‘Line No.’ field stores the line number of the statement

in the program. For if and while statements, this refers to

the line where if and while condition lies.We treat else

2
In our implementation, we also have statements of memory read and memory write.

They are processed similarly to assignments in the worklist algorithm, and we omit

them in the description for simplicity.



Stmt Stmt Code Line No. a Line No.(else) Line No.(end) variable ID (x)

x=a 1 / /

if . . .else . . .end 2 /

while. . .do . . .end 3 / /

Expression 𝑎 Expression Code Variable ID (𝑥1) Variable ID (𝑥2) Value Op code

𝑥1 1 / / /

𝑛 2 / / /

𝑜𝑝1 x 3 / /

𝑥1 𝑜𝑝2 𝑥2 4 /

Table 1: Arithmetic representation of our programs.

stmt ::= 𝑥 = 𝑎

| if 𝑥 then stmt else stmt end
| while 𝑥 do stmt end

𝑎 ::= 𝑥 | 𝑛 | op
1
𝑥 | 𝑥1 op2 𝑥2

op
1
::= not

op
2
::= + | − | ∗ | /| and | or

Figure 1: Our imperative programming language.
and end as a single line so that they have Line No. as well.

This helps upper-bound the number of outgoing edges in

later control flow graph construction.

(3) The field 𝑎 is only used in the assignment expression.

(4) ‘Variable ID’ refers to the left part of the assignment state-

ments and conditions in if and while statements.

Similarly, for each expression 𝑎, we use ‘Expression Code’ to

identify the type of the expression. We store two possible ‘Vari-

able ID’s, a ‘constant’ and an ‘Op code’. A ‘/’ symbol in the table

means that the field is not applicable for this type of statement or

expression and is left empty.

Using these table structures, we can represent the whole program

as a sequence of elements in the field F, and the prover can commit

it using existing commitment schemes.

3.2 Proving Intra-procedure Analysis
With our simple programming language and its arithmetic rep-

resentation, one can simply construct a zero-knowledge abstract

interpretation scheme using generic zero-knowledge proofs. The

prover commits to the secret program, and then proves the result

of Algorithm 1 on the program using generic ZKP. Unfortunately,

such a naive approach would introduce a high overhead on the

efficiency. Most generic ZKP schemes represent the computation as

an arithmetic circuit, and turning Algorithm 1 into an arithmetic

circuit naively would introduce a high overhead on the size of the

circuit. There exist RAM-based ZKP schemes that reduce RAM

programs to arithmetic circuits through RAM-to-circuit reduction.

The size of the circuit preserves the asymptotic running time of the

RAM program. However, the concrete overhead of these schemes

in practice is usually high. For example, each RAM instruction costs

thousands of arithmetic gates to implement [14, 16, 73].

In this section, we present our construction of the zero-knowledge

abstract interpretation. Using ideas in the literature of RAM-based

ZKP [14, 16, 21, 22, 66, 73], we construct an efficient arithmetic

circuit to validate the correct execution of Algorithm 1 on the

committed program. The prover and the verifier then invoke a

circuit-based ZKP scheme to prove and validate the result of the

abstract interpretation.

Figure 2 shows the main construction of our scheme. The red

part is the secret program owned by the prover, the blue part is

additional auxiliary input from the prover to validate the abstract

interpretation efficiently (see below), and the green part is the result

of the analysis.

Based on the functionality, our scheme is mainly divided into

four parts: 1) Checking the consistency between the program and

the control flow graph. 2) Checking the correct execution of each

iteration. 3) Checking lattice operations and transfer functions.

4) Deciding whether there are bugs or not based on the result of

Algorithm 1. The first and the second part is problem-independent,

and the third and the fourth part is problem-dependent. The fourth

part is usually simple in practice, containing only a few conditions.

Therefore, we focus on the first three parts in this section.

Control flow graph consistency. Since abstract interpretation
works on flows (𝑙, 𝑙 ′), in our zero-knowledge abstract interpretation
scheme, we first ask the prover to provide a control flow graph as

an auxiliary input to the circuit. In this graph, each node is a line of

code labeled by its line number, and an edge denotes a flow (𝑙, 𝑙 ′)
from node 𝑙 to node 𝑙 ′. Since we treat else and end as separate

lines, in our simple programming language a node in this graph can

have at most two outgoing edges in the case of loops and branches.

Therefore, we represent the entire control flow graph using a table

of size 𝑛×2. The 𝑙-th row of the table stores the target line numbers

of the two possible outgoing edges of line 𝑙 .

We then have to check that this control flow graph is indeed

consistent with the program. Note that we can obtain all the pos-

sible flows (𝑙, 𝑙 ′) from the program representation in Table 1. We

go through the whole program line by line, and each statement

individually contributes to a few flows. An assignment statement

produces only a single flow (𝑙, 𝑙 + 1); a while statement produces

three flows, (𝑙, 𝑙 + 1), (𝑙, 𝑙end + 1), (𝑙end, 𝑙); an if statement produces

four flows, (𝑙, 𝑙 + 1), (𝑙, 𝑙else + 1), (𝑙else, 𝑙end), (𝑙end, 𝑙end + 1). The
flows deduced by the 𝑛 × 2 table are simply permutations of these

flows obtained by the linear scan of the program, ordered by the

first line number 𝑙 .

In order to check that they are consistent, we apply existing

techniques in [61, 67, 73] for testing set equality. In these techniques,

we first combine the pair of values in each element of the sets

through H(𝑙, 𝑙 ′) = 𝑛𝑙 + 𝑙 ′, where 𝑛 is the number of lines in the

program. Thenwe compute the characteristic functionsℎ of the sets:

ℎ𝐴 (𝑥) =
∏
(𝑙,𝑙 ′) ∈𝐴 (H (𝑙, 𝑙 ′) − 𝑥) . Once the characteristic functions

for the two sets are calculated respectively, a random challenge 𝑟

from the verifier is generated. If the two characteristic functions



Figure 2: Our circuit checking the correctness of the abstract interpretation in Algorithm 1.
agree on the random point 𝑟 , then they will be the same with

overwhelming probability by the Schwartz-Zippel Lemma [60, 74].

The size of the circuit for the check above is 𝑂 (𝑛).

Correct execution of the iteration.With the control flow graph

provided by the prover, we then show how to execute each iteration

of Algorithm 1. The correct execution of the iteration can be fur-

ther divided into executing queue operations, fetching instructions,

reading and writing analysis states and extracting following flows.

The queue operation is not naturally supported by circuits. A

queue𝑊 has 𝑝𝑢𝑠ℎ and 𝑝𝑜𝑝 operations, which follows a first-in-

first-out strategy. We model the queue as an array 𝑎𝑟𝑟 with a head

index 𝑠 and a tail index 𝑡 . When𝑊 .𝑝𝑢𝑠ℎ(𝑒) is called, we increment

𝑡 , and write the element 𝑒 into 𝑎𝑟𝑟 [𝑡]. Similarly, when𝑊 .𝑝𝑜𝑝 () is
called, we return 𝑎𝑟𝑟 [𝑠] and then increment 𝑠 . For the queue𝑊

used in Algorithm 1, we observe that exactly one flow is popped

in each iteration and at most 2 flows are pushed into the queue, as

each line has at most two outgoing flows. Therefore, we can ask the

prover to provide the entire execution trace of the queue𝑊 as an

auxiliary input. The circuit first checks that the queue is initialized

correctly, i.e., the first𝑚 flows are the same as those in the control

flow graph. Then in each iteration, 𝑠 increases by 1 and the pop

operation in step 4 is a linear scan over the entire trace.

𝑡 , however, is more complicated to deal with. As at most 2 flows

are pushed in each iteration, we ask the prover to provide 𝑎𝑟𝑟 [𝑡]
and 𝑎𝑟𝑟 [𝑡 + 1] as auxiliary input. The circuit then performs the

computation of Step 5-8 in Algorithm 1. This is the combination

of several cases: if the condition in Step 5 is false, the circuit does

nothing and keeps 𝑡 unchanged; otherwise, the circuit compares

𝑎𝑟𝑟 [𝑡] and 𝑎𝑟𝑟 [𝑡 +1] to the flows of 𝑙 ′ in the control flow graph. If 𝑙 ′

has only one flow, we only compare it with 𝑎𝑟𝑟 [𝑡] and set 𝑡 = 𝑡 + 1;
otherwise we compare the two flows with 𝑎𝑟𝑟 [𝑡], 𝑎𝑟𝑟 [𝑡 + 1] and
set 𝑡 = 𝑡 + 2. How to compute the condition of Step 5 and fetch the

flows of 𝑙 ′ are explained later. In this way, the circuit to deal with

the queue operation for each iteration is of constant size. Finally,

we need to make sure that the auxiliary input 𝑎𝑟𝑟 [𝑡], 𝑎𝑟𝑟 [𝑡 + 1]
in every iteration is consistent with the entire trace of the queue.

This cannot be done by a linear scan, as 𝑡 increases by 0, 1 or 2 in

different cases. Instead, we view them as memory read at address 𝑡

and 𝑡 + 1 from the trace of the queue and validate their correctness

by memory consistency checks, which we describe later. We will

use the memory checking techniques extensively below.

The second component in each iteration is the instruction fetch.

As shown in Algorithm 1, a flow (𝑙, 𝑙 ′) is popped from queue𝑊 in

step 4 and we need to fetch line 𝑙 from the program committed by

the prover in order to determine the transfer functionA𝑝,𝑙 and the

IDs of the variables touched by line 𝑙 . If we view the program as

a memory indexed by the line number, this instruction fetch is a

classical read operation of a random access memory. Thus we ask

the prover to provide the expected content of line 𝑙 in the program,

and validate its correctness by memory consistency checks.

The third component is updating the states of variables in step 5

and 6. As explained in Section 2.2, 𝑆 = {𝑠𝑙 }𝑛 and each 𝑠𝑙 consists of

the states of all variables. Thus we use an 𝑛 × 𝑣 matrix to represent

𝑆 , where 𝑣 is the total number of variables in the program. Every

value in the matrix is one of the states in the Lattice val
♯
, initialized

to ⊥ (also mapped to a particular value in the field). In step 5 of

Algorithm 1, we perform memory read at 𝑙 to obtain the states

of variables used by A𝑝,𝑙 ; in step 6, if step 5 is true, we perform

memory write to 𝑙 ′ to update the states of variables in 𝑠𝑙 ′ .

Another operation in step 7 is to extract all lines following 𝑙 ′ if
the states 𝑠𝑙 ′ is updated. Thanks to our representation of programs,

one line can have at most two following lines in the intra-procedural

analysis. Thus this operation is a memory read from the control

flow graph represented as an 𝑛 × 2 table. We let the prover provide

the content of line 𝑙 ′ in the table, and launch another memory

consistency check to ensure its correctness. The flows are then

compared to 𝑎𝑟𝑟 [𝑡] and 𝑎𝑟𝑟 [𝑡 + 1] as explained above for the push

operation in the queue.

Memory consistency check. We used the memory consistency

check heavily in the design above, and here we described our tech-

niques in details. Memory checking is commonly used in RAM-

based zero-knowledge proof schemes to validate the correctness

of memory accesses by a circuit efficiently. To check 𝑇 memory ac-

cesses, the circuit size is𝑂 (𝑇polylog(𝑇 )), instead of𝑂 (𝑀𝑇 ) naively
where𝑀 is the size of the entire memory. Ben-Sasson et al. [14] in-

troduced a memory checking scheme using permutation networks,

which is later refined in [16, 21, 73]. In this paper, we use a mem-

ory checking scheme called offline memory checking, introduced
recently in [61, 62] based on the idea of the earlier work [18].



Offline memory checking. Formally, we view the memory as a vec-

tor of key value pairs (𝑘, v), where v itself can be a vector of values.

Each Read(𝑘) operation fetches the value v associated with key 𝑘 ,

and each Write(𝑘, v′) changes the value associated with 𝑘 to v′.
The offline memory checking technique [18, 62] reduces the

correctness of memory operations to a set relationship. In particular,

it introduces two timestamps 𝑡 and 𝑡𝑠 , a read set 𝑅𝑆 and a write set

𝑊𝑆 . 𝑡𝑠 is the current timestamp, incremented by 1 after every Read
orWrite operation. 𝑡 (for a key/address 𝑘) is the timestamp when

the value at 𝑘 is accessed last time. Now the memory becomes a

vector of tuples (𝑘, v, 𝑡). When performing a memory operation

(Read(𝑘) orWrite(𝑘, v′)),
• Fetch the tuple (𝑘, v, 𝑡) from the memory and add it to 𝑅𝑆 ,

• Update the current timestamp as 𝑡𝑠 = 𝑡𝑠 + 1,
• For a Read, add the tuple (𝑘, v, 𝑡𝑠) to𝑊𝑆 and update the memory

at 𝑘 as (𝑘, v, 𝑡𝑠); for a Write, add the tuple (𝑘, v′, 𝑡𝑠) to𝑊𝑆 and

update the memory at 𝑘 as (𝑘, v′, 𝑡𝑠).
Observe that all the elements in the 𝑅𝑆 and𝑊𝑆 are unique as the

timestamps are increasing, and the 𝑅𝑆 is always lacking behind

𝑊𝑆 by the last state of the memory. Therefore, it is shown that the

memory is correctly executed if and only if Init∪𝑊𝑆 = 𝑅𝑆 ∪ Final,
where Init and Final denote sets representing the initial state and
the final state of the memory.

Checking memory consistency in circuits. In our zero-knowledge

abstract interpretation scheme, all information regarding the mem-

ory operations are provided by the untrusted prover. Therefore, it

requires additional input and checks to perform the offline memory

checking. Taking the instruction fetch as an example. We view the

instructions in the secret program as a read-only memory. The

secret program was already committed by the prover and it is not

hard to check that the program is well-formed in our programming

language. Therefore, the initial state of the memory is well-defined.

During the execution of the worklist algorithm, the current times-

tamp 𝑡𝑠 is simply the numbering of the current iteration. We add a

counter starting from 0 and increase it by 1 in each iteration, thus

𝑡𝑠 is always correctly computed. As the instructions are read-only,

in every instruction fetch the prover provides the line number 𝑙

and its value v, and we use them both for the read set 𝑅𝑆 and the

write set𝑊𝑆 . The only missing part is the timestamp 𝑡 when the

instruction was last accessed. We ask the prover to further provide

𝑡 for every read operation as an auxiliary input. In addition, we

check that 𝑡 ≤ 𝑡𝑠 in the circuit. With all of the information above,

each read operation adds (𝑙, v, 𝑡) to 𝑅𝑆 and (𝑙, v, 𝑡𝑠) to𝑊𝑆 .

Some components in our scheme, such as updating the states

of variables, has both memory read and memory write operations.

Similar to the case above, the states of all variables are initialized to

all 0s, which defines the initial state of the memory correctly. The

timestamp 𝑡𝑠 can again be correctly computed with the iterations

of Algorithm 1. When writing to a memory address with key 𝑘 and

value v′ (computed by the transfer function and the lattice), we add

(𝑘, v′, 𝑡𝑠) to𝑊𝑆 . However, the algorithm never uses the original

value v. In this case, we ask the prover to provide both v and the

timestamp 𝑡 as auxiliary inputs. The circuit again checks that 𝑡 ≤ 𝑡𝑠

in every memory operation. We show in Appendix C that with this

additional check of 𝑡 ≤ 𝑡𝑠 in both cases ensures the correctness of

the memory operations.

Set relationship. To complete our memory consistency check, we

again rely on the characteristic polynomials of the sets, as in [21,

61, 62]. We first compress the tuple by a random linear combina-

tionH(𝑘, v, 𝑡) = 𝑘 + 𝑟 · 𝑡 +∑𝑖 𝑟
𝑖+2𝑣𝑖 , where 𝑟 is randomly chosen

by the verifier. Then the characteristic polynomial of a set 𝐴 is

ℎ𝐴 (𝑥) =
∏

𝑎∈𝐴 (H (𝑎) − 𝑥). The circuit computes the characteris-

tic polynomials ℎ𝑅𝑆 (𝑥), ℎ𝑊𝑆 (𝑥), ℎInit (𝑥), ℎFinal (𝑥), and checks that
ℎ𝑊𝑆 (𝛾) · ℎInit (𝛾) = ℎ𝑅𝑆 (𝛾) · ℎFinal (𝛾), for a random 𝛾 chosen by

the verifier. This guarantees that Init ∪𝑊𝑆 = 𝑅𝑆 ∪ Final with
overwhelming probability by the Schwarz-Zippel lemma.

The circuit size of our memory checking technique is𝑂 (𝑇 log𝑇 )
for𝑇 memory operations. Note that the schemes in [61, 62] achieve

linear complexity as the verifier knows the memory access pattern.

In our case, all the information are provided by the prover and

validated in the circuit, thus these schemes are not sufficient. Com-

paring to existing memory checking techniques in [14, 16, 21, 73],

though our complexity is asymptotically the same, concretely in

our scheme the circuit only checks 𝑡 ≤ 𝑡𝑠 in each memory write,

while the existing schemes check both the memory addresses and

the timestamps are sorted. Our circuit is smaller in practice, and

our memory checking scheme may be of independent interest.

Lattice operations and transfer functions. Lattice operations
and transfer functions in step 5 and 6 of Algorithm 1 are problem-

dependent. Generally speaking, after fetching the states of variables

from 𝑠𝑙 , we implement the circuit to compute the transfer function

A𝑝,𝑙 on the state of each variable, denoted as 𝑠∗
𝑙
= A𝑝,𝑙 (𝑠𝑙 ). Then

for every variable, we implement the compare operation on 𝑠∗𝑙
and 𝑠 ′

𝑙
and outputs 1 if 𝑠∗𝑙 /⊑ 𝑠𝑙 ′ . As the lattice val

♯
is a partially

ordered set, the circuit size for the compare function is quadratic

in the number of states in val
♯
in the worst case. Finally, if the

compare function outputs 1 for any variable, we implement the

join operation of the lattice 𝑠𝑙 ′ = 𝑠𝑙 ′ ⊔ 𝑠∗𝑙 in step 6 in the circuit. The

size of the circuit in this step varies a lot for different analyses. In

this paper, we focus on specific ones illustrated below. Compiling

these functions to circuits automatically and efficiently is left as an

interesting future work.

Here we give two examples we use in the experiments later:

tainting analysis and interval analysis. For the tainting analysis, the

lattice is small and finite, consisting of only two values: UnTainted
and Tainted. The transfer function monitors the flow of tainting

information. For statements of assignment such as 𝑎 = 𝑥1 𝑜𝑝 𝑥2, it

sets 𝑎 to Tainted if either 𝑥1 or 𝑥2 is Tainted. Statements of If ...

else and While do not change the state at all. Looking ahead, for

inter-procedure analysis with function calls in Section 4, depending

on the applications some functions are defined as tainting sources,

sanitizers or safe procedures. When seeing these function calls, the

transfer function sets the state of the variable to Tainted,UnTainted
or same as the input respectively. The compare and the join oper-

ations are also very simple. We define UnTainted < Tainted, and
UnTainted∪Tainted = Tainted in the lattice. Therefore, in tainting

analysis, the transfer function, the compare and the join operation

can be implemented as circuits of constant size.

For the interval analysis, the lattice has an infinite size. It consists

of all the intervals of the form [𝑙, 𝑟 ], where 𝑙 and 𝑟 are integers in
most cases, and can be∞ and −∞ as well to denote uncertainty. The

transfer function computes the possible range of variables based



on the instructions and the input. For example, an instruction 𝑎 = 2

changes the state of 𝑎 to [2, 2]; an instruction 𝑎 = 𝑥1 +𝑥2 with input

states 𝑥1 = [𝑙1, 𝑟1], 𝑥2 = [𝑙2, 𝑟2] set the state of 𝑎 to [𝑙1 + 𝑙2, 𝑟1 + 𝑟2];
an instruction 𝑎 = 𝑥1−𝑥2 with input states 𝑥1 = [𝑙1, 𝑟1], 𝑥2 = [𝑙2, 𝑟2]
set the state of 𝑎 to [𝑙1−𝑟2, 𝑟1−𝑙2]. The compare operation is defined

as the subset relationship of intervals, i.e., [𝑙1, 𝑟1] ⊆ [𝑙2, 𝑟2] if 𝑙1 ≥ 𝑙2
and 𝑟1 ≤ 𝑟2, which is a partial ordering. The join operation returns

the tightest interval that contains the union of the two intervals,

i.e., [𝑙1, 𝑟1] ∪ [𝑙2, 𝑟2] = [min(𝑙1, 𝑙2),max(𝑟1, 𝑟2)]. The size of circuits
for these functions is linear to the bit-length of the integers.

Widening.Our scheme also supports thewidening operator∇with
a small overhead. We add a counter to each line of code initialized to

0 and increase it by 1 every time the line is analyzed in the worklist

algorithm. When the counter reaches the predefined threshold, the

algorithm forces the early convergence, i.e., setting the bounds to

∞ and −∞ in the interval analysis. Updating the counter for each

line of code also consists of memory accesses, thus it is convenient

to store it together with the states of the variables in an 𝑛 × (𝑣 + 1)
table, and slightly modify the transfer function to include the case

above. This approach only introduces a small overhead on the size

of the entire circuit.

Complexity. Overall, with all the building blocks explained above,

the total size of the circuits for the examples we consider is 𝑂 (𝑇 ·
𝑣 + 𝑇 log𝑇 ), where 𝑇 is the number of iterations of the worklist

algorithm and 𝑣 is the number of variables. The first term 𝑂 (𝑇 ·
𝑣) hides the complexity of transfer functions, compare and join

operations depending on different analyses. This is asymptotically

the same as the plain worklist algorithm in Algorithm 1 up to

a logarithmic factor. In practice, we observe that the first term

updating the states of all variables is the dominating part.

3.3 Putting Everything Together
After reducing the correct execution of the worklist algorithm to the

circuit in Figure 2, we then apply the a generic zero knowledge proof

scheme as the backend on the circuit and complete the construction

of our zero-knowledge abstract interpretation scheme. The formal

protocol is described in Protocol 1 in Appendix D. We have the

following theorem:

Theorem 1. Protocol 1 is a zero-knowledge abstract interpretation
scheme by Definition 2.

The theorem follows the correct reduction to the circuit in Fig-

ure 2, the correctness, soundness and zero-knowledge of the back-

end. We give a proof sketch in Appendix D.

Complexity. The overall complexity depends on the backend of

zero knowledge proof scheme. For example, using the pairing-based

SNARK [42], the prover time is 𝑂 (𝑇 · 𝑣 log𝑇 +𝑇 log
2𝑇 ), the proof

size is 𝑂 (1) and the verifier time is 𝑂 (1), where 𝑇 is the number of

iterations of the worklist algorithm and 𝑣 is the number of variables;

using the ZKP in [61], both the prover time and the verifier time

are 𝑂 (𝑇 · 𝑣 +𝑇 log𝑇 ), and the proof size is 𝑂 (
√
𝑇 · 𝑣 +𝑇 log𝑇 ).

4 PROVING INTER-PROCEDURAL ANALYSIS
In this section, we show how to extend our construction of zero-

knowledge abstract interpretation in Section 3 to inter-procedural

analysis for programs with function calls.

fdef ::= fname(𝑥, ..., 𝑥) begin stmt ... stmt end
stmt ::= ... | 𝑥 = fname(𝑥, ..., 𝑥)

Figure 3: Function calls in our programming language.
4.1 Inter-procedural Abstract Interpretation
Inter-procedural abstract interpretation is more demanding because

it takes function definitions and function calls into account. Com-

plications arise when dealing with the mechanism of arguments.

Generally speaking, at the beginning of a function call, the program

switches into a new variable scope, and pass all the arguments from

the caller’s variable scope to the new one. At the end of a function

call, the return value is passed back from callee’s variable scope.

Algorithm 1 works on flows and transfer functions, so it is still

possible to use it for inter-procedural analysis as long as the control

flows introduced by function calls and the corresponding transfer

functions are properly designed.

To properly modify the control flows, a few additional structural

instructions are added to the program. At the definition of a func-

tion 𝑝 , an instruction 𝑖𝑛𝑖𝑡 (𝑝) is used to mark the beginning of a

function, and an instruction 𝑓 𝑖𝑛𝑎𝑙 (𝑝) is used to mark the end.When

calling function 𝑝 , the call statement is split into two statements, i.e.

𝑒𝑛𝑡𝑒𝑟 (𝑝) and 𝑒𝑥𝑖𝑡 (𝑝). Three additional flows between these instruc-

tions are added to deal with function calls, i.e. 𝑒𝑛𝑡𝑒𝑟 (𝑝) → 𝑖𝑛𝑖𝑡 (𝑝),
𝑓 𝑖𝑛𝑎𝑙 (𝑝) → 𝑒𝑥𝑖𝑡 (𝑝), and 𝑒𝑛𝑡𝑒𝑟 (𝑝) → 𝑒𝑥𝑖𝑡 (𝑝). To ensure that argu-
ments and return values are passed properly, the transfer functions

located at the entrance and exit of function calls pass in the argu-

ments and pass out the return value, respectively.
3

4.2 Modifications to Our zkAI Scheme
To incorporate the changes of the inter-procedural abstract interpre-

tation above, we modify our programming language, and address

several critical challenges in this section.

Modification to the programming language. First, we add func-
tion calls to our programming language, as shown in Figure 3. This

is a natural extension of the original programming language in Fig-

ure 1. Now a program consists of several function definitions, and

each function definition has multiple arguments and statements.

For the statements, we introduce another type of function calls in

addition to the original statements of assignment, branch and loop.

With the inclusion of function definitions and calls to this language,

we can conduct an inter-procedural analysis.

Challenges. This additional statement of functions introduces

several challenges to our zero-knowledge abstract interpretation

scheme. The key reason is that each statement can have more than

two variables as the function arguments, and there can be more

than two flows going in to and out of a line because of function

calls. One could set an upper bound on these and use the same

zero-knowledge abstract interpretation in Section 3, but it would in-

troduce an multiplicative overhead of the upper bound. Instead, we

present several techniques to reduce the inter-procedural analysis

on programs with function calls to a circuit of the optimal size.

3
We focus on context insensitive analysis in this paper since it is the most common

design used in large-scale analysis tools, but our techniques can be extended to support

context sensitive analysis.



Algorithm 2 Access Linked List

Input: The linked list represented by arrays head, next, data. A node 𝑛𝑑

Output: data[𝑛] for all nodes 𝑛 in the list of 𝑛𝑑 .

1: for (𝑝𝑡 = head[𝑛𝑑 ];𝑝𝑡 ≠ NULL;𝑝𝑡 = next[𝑝𝑡 ]) do
2: Output (data[𝑝𝑡 ]) .
3: return

ProgramRepresentation.We think of a function as a fragment of

code. To represent a function definition, we store the start and end

line number of the function. Besides, we also store the number and

the type of the function arguments. We store all these information

in a function definition table.

Then we deal with the statements of function calls. The arith-

metic representation in Section 3.1 is efficient for intra-procedural

analysis due to the bounded number of fields required to repre-

sent a statement. However, this is not the case for inter-procedural

analysis because a ‘function call’ statement requires as many fields

as the number of function arguments. As a result, if we use the

same arithmetic representation as in Section 3.1, every statement

will have the same number of fields as the function with the most

arguments, which leads to a large overhead in practice.

Our solution is to create a ‘function call’ table which contains

the arguments of ‘function call’ statements. Then, in the original

‘statement’ table, an additional index to the ‘function call’ table

is added. This construction frees normal statements from dummy

fields. Since circuits do not naturally support indexing, we add

another memory checking whenever accessing these arguments.

Representing the control flow graph as a linked list.With the

function calls, each line of code can havemore than two incoming or

outgoing flows. Thus if we still represent the control flow graph as a

matrix, the size would be 𝑛 by the maximum number of flows from

any line. Instead, we propose an approach to simulate the linked

list in circuits efficiently using techniques of memory checking.

We construct 3 arrays: head, next and data. head is an array of

size 𝑛 and the 𝑙-th element stores the index of the start of the list for

𝑙 in next and data. next and data are of size𝑚. data[𝑝𝑡] stores the
data (flow) at a node pointed by an index 𝑝𝑡 , and next[𝑝𝑡] stores the
index of its next node as in a linked list. We use a special character

(e.g., −1 in the field) to denote the end of the list (NULL). With

these three arrays, we can traverse the linked list using the simple

algorithm in Algorithm 2. To validate the traversal in a circuit, we

ask the prover to provide the expected 𝑝𝑡 and 𝑑𝑎𝑡𝑎[𝑝𝑡] in each

iteration of Algorithm 2, and check their consistency with array

next and data using the memory checking technique in Section 3.2.

For our zero-knowledge abstract interpretation scheme, as shown

in Figure 2, we traverse the CFG with all lines to compute all flows

and compare it with the flows computed from the program. The

size of the circuit above doing so is 𝑂 (𝑚). In addition, during the

worklist algorithm, we fetch all the flows from 𝑙 ′ in each iteration of
Algorithm 1, and the circuit size for the linked list operations above

is optimal (the total number of flows in the worklist algorithm).

Loop Merge. With this linked-list representation of the control

flow graph, the only remaining challenge is the worklist algorithm.

In particular, since the number of flows from a line 𝑙 ′ is not a
constant anymore, the number of iterations in the loop of step 7

varies in every iteration of the outer loop. Compiling the algorithm

Algorithm 3 Verification of the Worklist Algorithm

Input: A program 𝑝 , transfer function A𝑝,𝑙 , lattice val
♯
, initial state𝑊𝑖𝑛𝑖𝑡 ,

and final state𝑊𝑓 𝑖𝑛𝑎𝑙 of the worklist.

Output: Abstract state at each line {𝑠𝑙 }𝑛 .
1: Init 𝑠𝑙 (𝑥) = ⊥

val
♯ for all 𝑙 and 𝑥 .

2: The first𝑚 flows in𝑊𝑓 𝑖𝑛𝑎𝑙 is the same as𝑊𝑖𝑛𝑖𝑡 .

3: for 𝑖 = 1→ |𝑊𝑓 𝑖𝑛𝑎𝑙 | do
4: (𝑙, 𝑙′) =𝑊𝑓 𝑖𝑛𝑎𝑙 [𝑖 ]
5: if 𝑓 ′

𝑙
(𝑠𝑙 ) /⊑ 𝑠𝑙′ then

6: 𝑠𝑙′ = 𝑠𝑙′ ⊔ A𝑝,𝑙 (𝑠𝑙 )
7: need_update[𝑖 ] = True

8: else
9: need_update[𝑖 ] = False

10: 𝑡 =𝑚 + 1
11: for 𝑖 = 1→ |𝑊𝑓 𝑖𝑛𝑎𝑙 | do
12: (𝑙, 𝑙′) =𝑊𝑓 𝑖𝑛𝑎𝑙 [𝑖 ]
13: if need_update[𝑖 ] then
14: for (𝑝𝑡 = head[𝑙′];𝑝𝑡 ≠ NULL;𝑝𝑡 = next[𝑝𝑡 ]) do
15: Check𝑊𝑓 𝑖𝑛𝑎𝑙 [𝑡 ] = data[𝑝𝑡 ].
16: 𝑡 = 𝑡 + 1

Algorithm 4 Loop Merged of Algorithm 3 step 10-16

1: 𝑡 =𝑚 + 1
2: 𝑖 = 1

3: (𝑙, 𝑙′) =𝑊𝑓 𝑖𝑛𝑎𝑙 [𝑖 ]
4: 𝑝𝑡 = head[𝑙′]
5: while 𝑖 ≤ |𝑊𝑓 𝑖𝑛𝑎𝑙 | or 𝑝𝑡 ≠ NULL do
6: if need_update[𝑖 ] and 𝑝𝑡 ≠ NULL then
7: Check𝑊𝑓 𝑖𝑛𝑎𝑙 [𝑡 ] = data[𝑝𝑡 ]
8: 𝑡 = 𝑡 + 1
9: 𝑝𝑡 = next[𝑝𝑡 ]
10: else
11: 𝑖 = 𝑖 + 1
12: (𝑙, 𝑙′) =𝑊𝑓 𝑖𝑛𝑎𝑙 [𝑖 ]
13: 𝑝𝑡 = head[𝑙′]

naively to a circuit will again introduce an overhead of the maxi-

mum possible number of flows in every iteration. In order to solve

this problem, we borrow an idea named flattening from prior work

in zero-knowledge [66] which merges two (or more) loops into one,

and we can bound the number of iterations of the outer loop.

To better illustrate the problem and the solution, we first rewrite

Algorithm 1 to Algorithm 3 which verifies the worklist algorithm

instead of computing it. Note that the algorithm takes the entire

final state of the worklist after all iterations as an input provided by

the prover. It checks that the first𝑚 flows are correctly initialized

to𝑊𝑖𝑛𝑖𝑡 , all flows of the program, then checks that the remaining

flows are pushed into the queue properly. Step 1-9 are almost the

same as step 1-6 in Algorithm 1 computing the transfer function,

compare and join operations, and we introduce an additional array

need_update for the sole purpose of explaining the challenge. In

step 10-16, the algorithm is checking that for each flow 𝑙 ′ in the

worklist, the following flows are pushed to the queue. It accesses

the flows from 𝑙 ′ using a linked list as shown in Algorithm 2. It

is not hard to see that the checks in Algorithm 3 pass as long as

𝑊𝑓 𝑖𝑛𝑎𝑙 is correctly computed by Algorithm 1.

Now the problem happens in step 10-16 of Algorithm 3. The size

of the outer loop is pre-defined, but the number of iterations of

the inner loop in step 14 varies, and implementing the algorithm



Algorithm 5 Checking the Validity of a Solution

Input: A program 𝑝 , control flow graph CFG𝑝 , transfer function A𝑝,𝑙 , and

lattice val
♯
, an abstract environment {𝑠𝑙 }𝑛𝑙=1.

Output: valid or invalid

1: Init queue:𝑊 := {(𝑙, 𝑙′) | 𝑙′ ∈ CFG𝑝 (𝑙) }.
2: while𝑊 ≠ ∅ do
3: (𝑙, 𝑙′) =𝑊 .𝑝𝑜𝑝 ()
4: if A𝑝,𝑙 (𝑠𝑙 ) /⊑ 𝑠𝑙′ then
5: return invalid

6: return valid

naively as a circuit introduces a high overhead as explained above.

To solve this problem, we change step 10-16 to Algorithm 4. In

Algorithm 4, both conditions on need_update[𝑖] and 𝑝 are merged

into a single loop, and the updates on 𝑖, 𝑡 and 𝑝 are all processed in

the loop. The total number of iterations for the large loop in step

5 is pre-defined, i.e. 2|𝑊𝑓 𝑖𝑛𝑎𝑙 | −𝑚. Implementing the algorithm as

a circuit preserves the number of iterations. The only overhead is

that in each iteration, the circuit executes statements in both step

6-9 and step 10-13, which slightly increases the size per iteration.

In addition to theworklist algorithm, in our schemewe also apply

the loop merge technique to check the consistency of the control

flow graph (computing all the flows from the secret program) with

the optimal circuit size. The algorithm is more straight forward

than the worklist algorithm and we omit the details here.

Complexity.With these modifications, the size of our circuit for

inter-procedure analysis remains 𝑂 (𝑇 · 𝑣 +𝑇 log𝑇 ), where 𝑣 now
denotes the maximum number of variables in any functions of

the program (we view the main program also as a function). The

concrete size of the circuit for the inter-procedure analysis is larger

compared to the intra-procedure analysis, as there are additional

computations of loop merge, linked list operations and copying

states of variables when entering to and exiting from functions.

5 PROVING ABSENCE OF BUGS
As mentioned in Section 2.2, when the prover wants to prove the

absence of bugs in the secret program, it suffices for the prover

to present any fix point of the abstract interpretation. The veri-

fier validates that it is indeed a solution, instead of validating the

whole computation of the worklist algorithm. Here we present the

algorithm of the validation in Algorithm 5.

As shown in the algorithm, it is enough to check that for every

flow (𝑙, 𝑙 ′), the state 𝑠∗
𝑙
= A𝑝,𝑙 (𝑠𝑙 ) is always ‘smaller than’ 𝑠𝑙 ′ in the

partial ordering of the lattice. The algorithm does not update the

states iteratively, thus no new flow is pushed into the queue𝑊 , as

in Algorithm 1. When implementing Algorithm 5 in circuits, the

queue is static and we do not need to support the push operation

using the loop merge technique. We also do not have the join

operation anymore, but in practice the overhead of join after the

compare operation is small. However, for inter-procedure analysis

with function calls, we still need to represent the CFG as a linked list

and check its consistency with the program using the techniques in

Section 4. The total size of the circuit becomes 𝑂 (𝑚 · 𝑣 +𝑚 log𝑚).

6 IMPLEMENTATION AND EVALUATIONS
We implement our zero-knowledge abstract interpretation scheme

and present the experimental results in this section.

Software. The schemes are implemented in C++. There are around

2, 500 lines of code for our frontend to compile the analyses to a

rank-1-constraint-system (R1CS). We use the open-source compiler

of libsnark [10] to generate R1CS in our frontend.

Choice of backends.As described in Section 3 and 4, our frontend
efficiently compiles the static analysis on a program to an R1CS

instance, and we can use any generic zero knowledge proof scheme

on R1CS as our backend, including [11, 15, 23, 25, 42, 53, 61]. We

choose two of them in our implementation with different trade-offs.

The first one is the pairing-based SNARK [42] with the change

in [24] for commit-and-prove. The scheme has a constant size proof

and fast verifier time. However, the prover time is relatively slow

(𝑂 (𝐶 log𝐶) on an R1CS of size 𝐶) and it requires a trusted setup.

The second one is the recent scheme from [61] called Spartan. The

scheme does not require trusted setup and the prover time faster

than [42], but the proof size is𝑂 (
√
𝐶) and the verifier time is𝑂 (𝐶).

Hardware. We run our experiments on Amazon EC2 c5.9xlarge

instances with 72GB of RAM and 3GHz Intel Xeon platinum 8124m

virtual core. We report the average running time of 5 executions.

Benchmarks. In this section, we report the performance of our

zero-knowledge abstract interpretation for three analyses: tainting

analysis, interval analysis and control flow analysis. The analyses

are performed on real programs drawn from the public benchmarks

for static analysis tools WCET [9] and DroidBench 2.0 [4], and exist-

ing artifacts for control flow analysis [8] used as the benchmarks in

the recent paper [68] on abstract interpretation. The WCET project

contains programs used to evaluate and compare different types of

analysis tools, while the DroidBench 2.0 is designated for evaluating

the effectiveness of taint-analysis tools for Android applications.

To perform control flow analysis, we make functions first-class

citizens in our language, which means they can be referred to by

variables and called anonymously. The abstract domain is then

defined as subsets of all possible functions in the program. Compar-

ison and join on this domain are defined as the subset relationship

and the set union operation respectively. We initialize the control

flow graph as all determined flows, and append all possible flows

to the worklist when we reach anonymous calls in the analysis.

All the programs in our benchmarks contain function calls. We

support inter-procedure analysis with a small overhead using the

techniques in Section 4. Therefore, we show the performance of our

zero-knowledge inter-procedure analysis scheme in this section.

6.1 Evaluations on Real Programs
We first evaluate our scheme on five real programs. We run the

zero-knowledge interval analysis on bubble sort and FFT programs

from the WCET benchmark [9], run the zero-knowledge tainting

analysis on the PrivateDataLeak program from the DroidBench 2.0

benchmark [4], and run the zero-knowledge control flow analysis

on the RSA and Solovay-strassen programs in [8].

We compile these programs to our programming language. For

the PrivateDataLeak program, built-in functions such as getDe-

viceId(), getPassWd() in the Android development environment

do not exist in our language, and we mark them as either tainting

source or safe procedures following the description of the bench-

marks. Some other procedures such as sendTextMessage() are

marked as ‘sink’ where tainting information should not flow into.



BubbleSort FFT PrivateDataLeak RSA Solovay-strassen

#lines 63 156 207 161 301

#variables 14 43 27 22 75

Analysis Interval Interval Tainting Control Flow Control Flow

#flows 78 181 232 215 374

#iterations 237 681 291 216 375

circuit size 582,048 4,763,263 277,537 255,056 1,235,354

SNARK [42] prover time 43.89s 355.2s 21.63s 20.21s 91.73s

verification time 1.4 ms

proof size 128 bytes

Spartan [61] prover time 6.49s 48.9s 3.27s 1.86s 12.8s

verification time 0.640s 6.54s 0.297s 0.208s 1.69s

proof size 48.1 KB 83.1 KB 31.1 KB 30.3 KB 48.8 KB

Table 2: Performance of our zkAI schemes.

The performance of our schemes are shown in Table 2. #variables

denotes the maximum number of variables in a function. The num-

ber of lines is counted in our language, as one can embed multiple

statements in one line in the original language. We also show the

number of flows𝑚 and the number of iterations 𝑇 . As shown in

the table, it takes 355.2s to generate a proof for zero knowledge

interval analysis on the FFT program with 156 lines of code, 21.63s

for zero knowledge taint analysis on the PrivateDataLeak with 207

lines of code, and 91.73s for zero knowledge control flow analysis

on the Solovay-strassen with 301 lines of code using SNARKs. The

proof size is only 128 bytes and the verification time is 1.4ms. Using

Spartan improves the prover time by 6.6–10.8×, with an increase

on the proof size and the verification time.

For the same analysis, the performance largely depends on the

size of the program and the maximum number of variables in a

function. In addition, the interval analysis is more expensive than

the other two. This is because the transfer function, compare and

join operations for the interval analysis contains many comparisons

on the bounds of intervals, while those for the tainting and control

flow analysis can be efficiently implemented as a small circuit.

Moreover, the worklist algorithm for the tainting and control flow

analysis converges very fast and the number of iterations is only

slightly larger than the number of flows. On the contrary, in the

interval analysis the intervals are updated many times when seeing

loops. Thanks to our widening technique with a threshold of 5, the

number of iterations is around 5 times of the number of flows.

The performance is reasonable in practice to prove properties of

secret programs with soundness and zero-knowledge. One can also

take advantages of other zero-knowledge proof backends to achieve

better trade-offs on the performance for different applications.

6.2 Comparing to Generic Schemes
We then compare the performance of our zkAI scheme with RAM-

based generic zero knowledge proof systems [16, 66]. The scheme

in [16] proposes a universal RAM-to-circuit reduction supporting

arbitrary RAM programs written in an assembly-like language

named TinyRAM. Each cycle costs around 4000 gates. We imple-

ment the worklist algorithm in TinyRAM, count the number of

cycles and estimate the size of the circuit. The scheme in [66], re-

ferred as Buffet, automatically compiles a subset of C language to a

program-specific circuit. Though the original scheme in [66] uses a

ZKP backend with circuit-dependent trusted setup, one can replace

it by backends without trusted setup to construct zero knowledge

abstract interpretation schemes per Definition 2. Therefore, here

we only compare with the frontend of Buffet. We implement the

worklist algorithm in the syntax of Buffet and compile it using the

open-source implementation [7].

Figure 4 shows the size of the circuits produced by the three

schemes for the tainting analysis on synthetic program with 10

variables. As shown in the figure, the general-purpose RAM-to-

circuit-reduction introduces the highest overhead per instruction/-

cycle. The size of the circuits is 605− 6400× larger than our scheme

and is beyond the current scale of the ZKP backend. The compiler

of Buffet significantly improves the size of the circuits by utilizing

program-dependent optimizations. However, the circuits are still

35 − 40× larger than our schemes manually constructed for the

tainting analysis. Compiling the worklist algorithm and the ab-

stract interpretation in general to arithmetic circuits automatically

and efficiently is an interesting future research, and we believe the

techniques proposed in this paper could potentially help the design.

6.3 Evaluations on Synthetic Programs
Finally, we further demonstrate the scalability of our schemes. We

follow the pattern of the real programs, and generate synthetic

programs of different sizes and parameters for benchmarking.

For the tainting analysis, our synthetic program contains nested

function calls. The tainting sources hide in some functions and the
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Figure 4: Comparison to generic zero-knowledge proofs



Tainting Interval CFA

#lines 12,800 2,000 4,000

#variables 70 50 50

#other parameters / 40% in loop Multiplicity=8

#iterations 25,231 5,075 4,317

circuit size 47.8 M 41.3 M 57.0 M

prover time [61] 406 s 394 s 421 s

verification time 65.8 s 57.9 s 75.7 s

proof size 282KB 282 KB 282KB

Table 3: Performance of our zkAI schemes on large synthetic
programs with Spartan [61] as the backend.

tainting information is supposed to be passed to the caller in nested

function calls. The functions are calling each other randomly, ensur-

ing that each function is called at least once. We set the maximum

number of variables in a function as 70. With these parameters, we

then randomly generate the statements inside each function. For

the interval analysis, our synthetic program contains nested loops

with memory accesses. We set some array buffers to have limited

sizes, and access the buffer in instructions later. The buffer overflow

error can then be detected in the problematic nested loops. To deal

with loops with many iterations, we take a widening strategy that

whenever the interval of a variable is updated more than a certain

number of times, we expand it to (−∞,∞). In our experiments, we

set this threshold to 5. We set the maximum number of variables

in a function as 50. In addition, we also set the percentage of the

code contained in the loops as 40%. For the control flow analysis,

we set up some identity functions at the beginning, and use some

branches in the main function to adjust possible functions a vari-

able can refer to. We define ‘multiplicity’ as the maximum number

of functions a variable can refer to. We set multiplicity as 8, and

the maximum number of variables in a function as 50. We then

generate the remaining program using random statements.

We plot the size of the circuits produced by our zero-knowledge

abstract interpretation schemes for the three analyses on synthetic

programs with different parameters and sizes in Figure 6 in Ap-

pendix E. We scale all programs to the largest instances that can

be handled on our machine, and we show the performance of the

largest programs in Table 3. As shown in the table, we are able to

perform the tainting analysis on a program with 12,800 lines of

code, the interval analysis with 2,000 lines of code and the control

flow analysis with 4,000 lines of code. The R1CS produced by our

zkAI is 41.3 to 57 million constraints. We are able to run the back-

end of Spartan [61] on these R1CS instances. The prover time for

the tainting analysis for example is 406s, the proof size is 282KB

and the verifier time is 65.8s. The SNARK backend [42] runs out

of memory, but can actually scale to half of these largest instances.

The prover time is estimated to be around 4500s, with a proof size

of 128 bytes and verification time of 1.4ms.

Experimental Results for Proving Absence of Bugs.We pick

two examples from the experiments: the tainting analysis on syn-

thetic programs with 50 variables and the interval analysis on

synthetic programs with 50 variables and 20% of code in the loops.

We implement their corresponding validation algorithms in Algo-

rithm 5 and Figure 5 shows their circuit sizes. As shown in the
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Figure 5: Performance of zkAI for proving absence of bugs.
figure, the circuit size is 1.9-2× smaller in the tainting checks, and

2.4-2.8× smaller in the interval analysis. The main reason is that

the validation algorithm only goes through all the flows once, while

the worklist algorithm iterates till convergence. The improvement

is roughly proportional to the ratio of the number of iterations over

the number of flows. The savings on the push operations in the

queue and the join operations in the lattice turn out to be small.

7 CONCLUSION
We have demonstrated an application of zero knowledge proofs to

static analysis of programs, and specifically using the framework of

abstract interpretation.We describe both intra-procedural and inter-

procedural analyses for a core imperative language, implementation

details for efficient execution in zero knowledge, and evaluation

results showing that the approach is practical in real settings.

Although we focus on the scenario where a prover wishes to

demonstrate knowledge that a secret program is free of bugs, there

are broader applications of zero knowledge abstract interpreta-

tion to explore in future work, for example, in accelerating the

performance of demonstrating proof-of-exploit in zero knowledge.

Approaches for proof-of-exploit have been explored in prior work,

and are based in simulating the concrete execution of a program

from a particular input which reaches the exploit. In principle, ap-

plying the abstract interpretation framework to compute sound

under-approximations—as opposed to sound over-approximations,

the focus in our work—could accelerate the efficiency of zero knowl-

edge proof of exploit by orders of magnitude. Such an approach

could be checked efficiently by the verifier without computing

fixpoints (as we show for over-approximations in Section 5) and

provide an irrefutable guarantee that the exploit exists (i.e., no false

positives).
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A ZERO-KNOWLEDGE ARGUMENTS
A zero-knowledge argument is a protocol between a computationally-

bounded prover P and a verifierV for an NP relationship R. At
the end of the protocol, P convincesV that she knows a witness

𝑤 such that (𝑥 ;𝑤) ∈ R for some input 𝑥 . “PPT" standards for prob-

abilistic polynomial time. We use G to represent the algorithm to

generate the public parameters. Formally, a zero-knowledge argu-

ment of knowledge is defined below, where R is known to P and

V .

Definition 1. Let R be an NP relation. A tuple of algorithm
(G,P,V) is a zero-knowledge argument of knowledge for R if the
following holds.

• Completeness. For every pp output by G(1𝜆), (𝑥 ;𝑤) ∈ R and
𝜋 ← P(𝑥,𝑤, pp), Pr[V(𝑥, 𝜋, pp) = 1] = 1

• Knowledge Soundness. For any PPT prover P∗, there exists a
PPT extractor E such that given the access to the entire executing
process and the randomness of P∗, E can extract a witness𝑤 such
that pp ← G(1𝜆), 𝜋∗ ← P∗ (𝑥, pp) and 𝑤 ← EP∗ (pp, 𝑥, 𝜋∗):
Pr[(𝑥 ;𝑤) ∉ R ∧V(𝑥, 𝜋∗, pp) = 1] ≤ negl(𝜆).
• Zero-knowledge. There exists a PPT simulator S such that for any
PPT algorithmV∗, (𝑥 ;𝑤) ∈ R, pp output by G(1𝜆), it holds that
View(V∗ (pp, 𝑥)) ≈ SV∗ (𝑥).

We say that (G,P,V) is a succinct argument system if the total
communication between P andV (proof size) is poly(𝜆, |𝑥 |, log |𝑤 |).

In the definition of zero-knowledge, View(V∗ (pp, 𝑥)) denotes
the veiw the verifier sees during the execution of the interactive

process with P while SV∗ (𝑥) denotes the view generated by S
given input 𝑥 and transcript of V∗, and ≈ denotes two distribu-

tions perfect indistinguishable. This definition is commonly used in

existing transparent zero-knowledge proof schemes [11, 15, 23, 67].

In addition, in order to build our zero-knowledge abstract in-

terpretation scheme, we need an additional property formalized

as “Commit-and-Prove” in [24]. It allows the prover to commit to

the witness first, and later prove statements about the commit-

ted value. It is naturally supported by most of ZKP systems. We

denote the algorithm as com𝑤 ← Commit(𝑤, pp). It is executed
after G and before P, and V additionally takes com𝑤 as an in-

put. It satisfies the extractability of commitment. Similar to the

extractability in Definition 1, there exists a PPT extractor E, given
any tuple (pp, 𝑥, com∗𝑤) and the executing process of P∗, it could
always extract a witness 𝑤∗ such that com∗𝑤 ← Commit(𝑤∗, pp)
except for negligible probability in 𝜆. Formally speaking, com∗𝑤 =

Commit(EP∗ (pp, 𝑥, com∗𝑤), pp).

Protocol 1 (Zero-Knowledge Abstract Interpretation(zkAI)). Let 𝜆
be the security parameter, F be a prime field, 𝑝 be the secret program,𝐶 be
the arithmetic circuit in Figure 2. Let P and V be the prover and the verifier
respectively. We use ZKP.G, ZKP.Commit, ZKP.P, ZKP.V to represent the
algorithms of the backend ZKP protocol.
• pp← zkAI.G(1𝜆) : pp = ZKP.G(1𝜆)
• com𝑝←zkAI.Commit(𝑝, pp) : com𝑝 = ZKP.Commit(𝑝, pp) .
• 𝜋 ← zkAI.P(𝑝, (𝐿′, 𝑓 ′, 𝑔,Alg), pp) :
(1) P runs the algorithm Alg with input 𝑝, 𝐿′ and 𝑓 ′ to get 𝑆 =

Alg(𝑝, 𝐿′, 𝑓 ′) . Then generates the witness 𝑤 = (𝐶𝐹𝐺,𝑇𝑟 ) for the
circuit 𝐶 during the procedure of the abstract interpretation algo-
rithm. 𝐶𝐹𝐺 and 𝑇𝑟 represents the extended witness in Figure 2. Let
com𝑤 ← ZKP.Commit(𝑤, pp) . P sends com𝑤 to V .

(2) After receiving the randomness r′ for checking consistency of the pro-
gram and the control flow graph, P invokes ZKP.P(𝐶, 𝑝, r′, 𝑤, 𝑝𝑝) to
get 𝜋 . Sends 𝜋 to V .

• {0, 1} ← zkAI.V(com𝑝 , com𝑤 , (𝐿′, 𝑓 ′,Alg, 𝑔), 𝜋, pp) : V outputs 1 if
ZKP.V(𝐶, com𝑝 , r′, 𝜋, com𝑤 , 𝑝𝑝) = 1, otherwise it outputs 0.

https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/996893.996869


B DEFINITIONS OF ZERO-KNOWLEDGE
ABSTRACT INTERPRETATION

Definition 2. We say that a scheme is a zero-knowledge abstract
interpretation if the following holds:

• Completeness. For any program𝑝 and analysis (val♯,A𝑝,𝑙 ,Alg, 𝑔),
pp ← zkAI.G(1𝜆), com𝑝 ← zkAI.Commit(𝑝, pp), (𝑦, 𝜋) ←
zkAI.P(𝑝, (val♯,A𝑝,𝑙 ,Alg, 𝑔), pp), it holds that

Pr

[
zkAI.V(com𝑝 , (val♯,A𝑝,𝑙 ,Alg, 𝑔), 𝑦, 𝜋, pp) = 1

]
= 1

• Soundness. For any PPT adversary Adv, the following probability
is negligible in 𝜆:

Pr



pp← zkAI.G(1𝜆)

(𝑝∗, com𝑝∗ , (val♯,A𝑝,𝑙 ,Alg, 𝑔), 𝑦, 𝜋∗) ← Adv(1𝜆, pp)
com𝑝∗ = zkAI.Commit(𝑝∗, pp)

zkAI.V(com𝑝∗ , (val♯,A𝑝,𝑙 ,Alg, 𝑔), 𝑦, 𝜋∗, pp) = 1

𝑔(Alg(𝑝, val♯,A𝑝,𝑙 )) ≠ 𝑦


• Zero-Knowledge. For security parameter 𝜆, pp ← zkAI.G(1𝜆),
for a program 𝑝 , PPT algorithm Adv, and simulator S = (S1,S2),
consider the following two experiments:

RealAdv,𝑝 (pp):
(1) com𝑝 ← zkAI.Commit (𝑝, pp)
(2) (val♯,A𝑝,𝑙 ,Alg, 𝑔) ← Adv(com𝑝 , pp)
(3) (𝑦, 𝜋) ← zkAI.P(𝑝, (val♯,A𝑝,𝑙 ,Alg, 𝑔), pp)
(4) 𝑏 ← Adv(com𝑝 , (val♯,A𝑝,𝑙 ,Alg, 𝑔), 𝑦, 𝜋, pp)
(5) Output b

IdealAdv,SAdv (pp, ℎ):
(1) com← S1 (1𝜆, pp)
(2) (val♯,A𝑝,𝑙 ,Alg, 𝑔) ← Adv(com, pp)
(3) (𝑦, 𝜋) ←SAdv

2
(com, (val♯,A𝑝,𝑙 ,Alg, 𝑔), pp),

(4) 𝑏 ← Adv(com, (val♯,A𝑝,𝑙 ,Alg, 𝑔), 𝑦, 𝜋, pp)
(5) Output b

For any PPT algorithm Adv and all programs 𝑝 , there exists simu-
lator S such that the following probability is negl(𝜆):
| Pr[RealAdv,𝑝 (pp) = 1] − Pr[IdealAdv,SAdv (pp, ℎ) = 1] |.

C PROOF OF MEMORY CHECKING
Theorem 2. Let 𝑀0 be the initial state of the memory of size𝑚

known to the verifier. Let (𝑎1, 𝑎2, ..., 𝑎𝑡 ) be the sequence of addresses to
access. Following the procedure mentioned in Section 3.2 to construct
𝑅𝑆 and𝑊𝑆 set, with the additional requirement that 𝑡 ≤ 𝑡𝑠 at each
step ,if the prover manages to give𝑀𝑡 that has the same size as𝑀0,
and satisfy𝑀0 ∪𝑊𝑆 = 𝑀𝑡 ∪ 𝑅𝑆 , then all the values in 𝑅𝑆 given by
the prover is consistent with values in the memory computed honestly.

Proof. We use 𝑅𝑆𝑖 ,𝑊 𝑆𝑖 to denote the first 𝑖 element of 𝑅𝑆 and

𝑊𝑆 respectively, i.e., the read set and write set after step 𝑖 . We use

𝑀𝑖 to denote the content of memory after step 𝑖 .

First, observe that if the prover faithfully computes the sets and

the memory up to step 𝑖 , then𝑀𝑖 = 𝑀0 ∪𝑊𝑆𝑖 \ 𝑅𝑆𝑖 . We would like

to prove that if the prover gives a wrong value pair in the sequence

of memory accesses, then it is impossible for him to give a final𝑀𝑡

such that𝑀0 ∪𝑊𝑆 = 𝑀𝑡 ∪ 𝑅𝑆 .
Now let us consider the first inconsistent value in the sequence

of memory accesses, happening at step 𝑗 , where 1 ≤ 𝑗 ≤ 𝑡 w.l.o.g.

Since the prover faithfully gives the correct value up to step 𝑗 − 1,
we can write 𝑀𝑗−1 = 𝑀0 ∪𝑊𝑆 𝑗−1 \ 𝑅𝑆 𝑗−1, which is the state

of the memory before step 𝑗 . If the prover gives the value pair

(𝑎 𝑗 , (𝑣 ′𝑎 𝑗
, 𝑡 ′𝑎 𝑗
)) that is inconsistent with the real value (𝑎 𝑗 , (𝑣𝑎 𝑗

, 𝑡𝑎 𝑗
)),

then this means it is not in 𝑀𝑗−1. Moerover, this fake value pair

can not appear in following𝑊𝑆 \𝑊𝑆 𝑗−1 because all value pairs in
𝑊𝑆 \𝑊𝑆 𝑗−1 has a time step larger than 𝑡 ′𝑎 𝑗

which is ensured by the

condition 𝑡 ≤ 𝑡𝑠 at each step, and 𝑡𝑠 is increasing by 1. As a result,

it is impossible to find𝑀𝑡 such that equation 1 holds

𝑀𝑗−1 ∪ (𝑊𝑆 \𝑊𝑆 𝑗−1) = (𝑅𝑆 \ 𝑅𝑆 𝑗−1) ∪𝑀𝑡 , (1)

because the fake pair is not in𝑀𝑗−1 or (𝑊𝑆 \𝑊𝑆 𝑗−1), but in (𝑅𝑆 \
𝑅𝑆 𝑗−1). Finally, recall that𝑀𝑗−1 = 𝑀0∪𝑊𝑆 𝑗−1 \𝑅𝑆 𝑗−1. Substituting
it into Equation 1 shows that𝑀0 ∪𝑊𝑆 = 𝑅𝑆 ∪𝑀𝑡 cannot hold. □

D PROOF OF THEOREM 1
Completeness. As explained in Section 3.2, the circuit in zkAI.P
outputs 1 if 𝑔(Alg(𝑝, 𝐿′, 𝑓 ′)) = 1. Therefore, the correctness of

Protocol 1 follows the zero-knowledge proof protocol by Theorem 2.

Soundness. By the extractability of the commitment in the zero

knowledge proof backend (Definition 1), with overwhelming prob-

ability, there exists a PPT extractor E such that given com𝑤 , it ex-

tracts a witness𝑤∗ such that com𝑤 = ZKP.Commit(𝑤∗, pp). By the
soundness of zkAI in Definition 2, if com𝑝 = zkAI.Commit(𝑝, pp)
and zkAI.V(com𝑝 , (𝐿′, 𝑓 ′,Alg, 𝑔), 𝜋, pp) = 1 but 𝑔(Alg(𝐿′, 𝑓 ′)) = 0,

let com𝑤 = ZKP.Commit(𝑤∗, pp
2
) during the interactive process

in Protocol 1, then there are two cases.

• Case 1: 𝑤∗ = (𝐶𝐹𝐺∗,𝑇𝑟∗, 𝑟 ) such that 𝐶 ((com𝑝 ,𝐶𝐹𝐺
∗,𝑇𝑟∗, r′);

𝑤∗) = 1. Then we know either the control flow graph is not

consistent with the program representation or the iteration check

fails. The probability of both events are negl(𝜆) as claimed by

the soundness of the checks in 3.2. Hence, the probability that P
could generate such𝑤∗ is also negl(𝜆) by the union bound.

• Case 2: 𝑤∗ = (𝐶𝐹𝐺∗,𝑇𝑟∗, 𝑟 ) but 𝐶 ((com𝑝 ,𝐶𝐹𝐺
∗,𝑇𝑟∗, r′);𝑤∗) =

0. Then according to the soundness of Aurora, given the commit-

ment com∗𝑤 , the adversary could generate a proof 𝜋𝑤 making

V accept the incorrect witness and output 1 with probability

negl(𝜆).
Combining these two cases, the soundness of the zkAI scheme is

also negl(𝜆).
Zero-knowledge. The zero-knowledge property follows directly

from the commitment scheme and the zero-knowledge backend we

use.

E ADDITIONAL EXPERIMENTAL RESULTS
Circuit size for our zkAI on synthetic programs. The size of
circuits produced by our zero-knowledge abstract interpretation

schemes for various analyses and sizes are shown in Figure 6.
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Figure 6: Circuit size of our zkAI schemes.
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