Formally Verifying
and Deriving
Gradual Type Systems

David Darais
University of Maryland

lopics

lopics

e : 7
gradual types

lopics

e : 7 - V(x).P(x)

gradual types formal verification

lopics

e : 7 - V(x).P(x)
gradual types formal verification
Z & { T 0 ’ +}

abstract interpretation

lopics

e : 7 Abstracting Gradual Typing
gradual types [Garcia, Clark, Tanter; 2016]
Z & { B, @ ’ +}

abstract interpretation

lopics

Mechanically Verified

Calculational Abstract -V (X) . P (X)
Interpretation (Draft)

[Darais, Van Horn; 2015] /

Z & {'r®r+}

abstract interpretation

formal verification

lopics

- 77
e : e F V(x).P(x)
gradual types \ / formal verification
Z & { T @ ’ +}

abstract interpretation

Deriving
Gradual Type Systems

e : 7 HZ(_—){',G),'F}

gradual types abstract interpretation

 Challenge:
Gradual type systems are ad-hoc and sometimes wrong

* Insight:
Guide design through abstract interpretation

Precise Types (Static)

Precise Types (Static)

Precise Types (Static)

Precise Types (Static)

int v

Precise Types (Static)

& F 1 +5 : int v
X

Precise Types (Static)

& F 1 +5 : int v
X

Precise Types (Dynamic)

Precise Types (Dynamic)

Do
recise Types (Dynamic)

-
-

Precise Types (Dynamic)

Gradual Types (Hybrid)

Gradual Types (Hybrid)

Gradual Types (Hybrid)

Gradual Types (Hybrid)

Gradual Types (Hybrid)

“What Do You Want?”

What Do You Want?

if(x){&}{1} + 3

What Do You Want?

if(x){&}{1} + 3

<Static Rob> &

What Do You Want?

. ‘I couldn't verify that, in every
‘ L) {&H1) +_3 case, it's safe to put & there'

OR

"There exist some case where

<Static Rob> & it's unsafe to put & there'

What Do You Want?

if(x){&}{1} + 3

<Gradual Rob> &

What Do You Want?

. 'l couldn't verity that, in some
. L) {ar1} +_3 case, it's safe to put & there'

OR

'In every case, it's unsafe to

out & there"

2

<Gradual Rob> &

What Do You Want?

1f(x){&}{1} + 3

<Dynamic Rob> &

What Do You Want”

if(x){&}{1} + 3

—

“F= it we'll do it live!
¥ -Bill O'Reilly

<Dynamic Rob> &

Breakdown

Breakdown

Static

Static Guarantee
Verification
'v" safety

"3" rejection

Breakdown

Static Gradual
Static Guarantee Static Guarantee
Veritication Bug Finding
'v' safety "3" safety
"3" rejection V" rejection

Breakdown

Static Gradual Dynamic
Static Guarantee Static Guarantee fe]
Veritication Bug Finding fe]
'v" safety "3" safety ol
"3" rejection V' rejection fo]

AGT In A Nutshell

T € type = B | T-1
e € exp = Db | if(e){e}{e}
| X | A(x).e | e(e)

AGT In A Nutshell

T € type = B | T-1
e € exp = Db | if(e){e}{e}
| X | A(x).e | e(e)

e1:B
e2:.T
e3: T
[[B-E]

if(er){ez2}{es3}:T

AGT In A Nutshell

T € type = B | T-1
e € exp = Db | if(e){e}{e}
| X | A(x).e | e(e)

e1: B
e2:T
e3.:.T

[B-E]
if(er){ez2}{es3}:T

€1:T1-T2
e2:Tz1

[--E]
el(ez):Tz

AGT In A Nutshell

T € type’ =
e € exp

| -t | 7
if(e){e}{e}
A(Xx

B
b |
X |).e | e(e)

e1: B
e2:T
e3.:.T

[B-E]
if(er){ez2}{es3}:T

€1:T1-T2
e2:Tz1

[--E]
el(ez):Tz

AGT In A Nutshell

T € type” = B | =T | 7
e € exp’ = Db | if(e){e}{e}
| X | A(x).e | e(e) | e:stT
4
e1:
e2:T
e3: T
[B-E]
lf(61){62}{63}:T
€1:T1-T2
e2:Tx1
[--E]

el(ez):Tz

AGT In A Nutshell

T € type” = B | =T | 7
e € exp’ =b | 1f(e){e}{e}
| X | A(x).e | e(e) | e:t

e1:T1 Ti1~B

e2.7T2
es3:Ts
[B-E] 4
1if(e1){ez2}{e3}:T2VTs
€1:T1-T2
ez2:.Tza

[--E]

el(ez):Tz

AGT In A Nutshell

T € type” = B | =T | 7
e € exp’ =b | 1f(e){e}{e}
| X | A(x).e | e(e) | e:t

e1:T1 T1~B

e2.7T2

es3:Ts

[B-E]
lf(el){ez}{63}:T2VT3

e1:T1 T1~T11-T21
e2:T2 T2~T11

[--E]

e1(ez):T21

Plausibility

e1:Tza T1~T11-T21

e2:.T2 T2~T11
[--E]

61(62):T21

Plausipllity

e1:Tza T1~T11-T21

€2:T2 T2~T11 o E] “It's plausible that e1 has
some arrow type Ti11-T21"

e1(ez2):121

Plausipllity

e1:Tza T1~T11-T21

€2:T2 T2~T11 o E] “It's plausible that e1 has
some arrow type Ti11-T21"

e1(ez2):121

Plausibility

e1:Tza T1~T11-T21

€2:T2 T2~T11 o E] “It's plausible that e1 has
some arrow type Ti11-T21"

61(62):T21

€:T1 Ti1~T2 ‘| claim e might
° have type 12"

Plausibility

e1:Tz1 T1~T11-T21

€2:T2 T2~T11 o E] “It's plausible that e1 has
some arrow type Ti11-T21"

61(62):T21

€:T1 Ti1~T2 ‘| claim e might
° have type 12"

Plausibility

e1:Tz1 T1~T11-T21

€2:T2 T2~T11 o E] “It's plausible that e1 has
some arrow type Ti11-T21"

61(62):T21

€:T1 Ti1~T2 ‘| claim e might
° have type 12"

(est2) : 12

— — <Gradual Rob> &
| ‘It you say so..."

Consistent Equality

gi~gt

Consistent Equality
gT~QgT

’ . [1 : type* -» Z(type)
meaning” of a [B] = {B}

gradua| ’[ype [gTi-gT2] = {T1-T2 | T1€[QgT1] A T2€[QgT2]}
[?] = {t | Tt€type}

Consistent Equality
gT~QgT

’ . [1 : type* -» Z(type)
meaning” of a [B] = {B}

gradua| ’[ype [gTi-gT2] = {T1-T2 | T1€[QgT1] A T2€[QgT2]}
[?] = {t | Tt€type}

T1€[QT1]
consistent equalities 12€[gT2] T1 = T2
are "plausibilities” =================

The Whole AGT Story

The “meaning” function []| forms a Galois
connection between precise and gradual types.

Guided by the Galois connection, define consistent
equality and derive dynamic and static semantics.

“Semantics design by abstract interpretation.”

Formally Veritying Derived
Gradual Type Systems

e : 7
gradual types

"\
/ 2 {-,0,+}

abstract interpretation

Formally Veritying Derived
Gradual Type Systems

7 2 {-,0,+} (F V(x).P(x)

abstract interpretation formal verification

 Challenge:
Galois connections are problematic in formal verification

* Insight:
|solate the problem with a meta- “specification” effect

Galois Connections

[] : type’ » Z(type)

[B] = {B}
[gT1-0T2] = {T1-T2 | T1€[gT2] A T2€[QgT2]}

[7] = {T | TE€type}

Galois Connections

Yy : type’ - P(type)

y(B) = {B}

Y(gT1-0gT2) = {T1-T2 | T1€y(QgT1) A T2€6Y(QgT2)}
vy(?) = {t | t€type}

Galois Connections

Yy : type’ - F(type)

y(B) = {B}
Y(gT1-0gT2) = {T1-T2 | T1€y(QgT1) A T2€6Y(QgT2)}
vy(?) = {t | t€type}

a : P(type) - type’
a({t2..Tn}) = u n(Ts)

Galois Connections

Yy : type’ - P(type)

y(B) = {B}

Y(gT1-0gT2) = {T1-T2 | T1€y(QgT1) A T2€6Y(QgT2)}
vy(?) = {t | t€type}

_ : type - type?
a : P(type) - type? A
(type) yp N(B) = B

a({Tl"T”}) = Q n(Ti) n(T1AT2) = n(Tl)an(TZ)

T1UT2 = 7 when Ti1#T2
T1 when Ti1=T2

Galois Connections

Yy : type’ » P(type)
Y(B) = {B}

Y(gT1-0gT2) = {T1-T2 | T1€y(QgT1) A T2€6Y(QgT2)}

y(?7) = {1t | T€Etype}

Non-constructive

Constructive

a : P(type) - type’
a({t2..Tn}) = u n(Ts)

n : type - type?
r](lB) = [EB
N(ti-T2) = n(t1)-n(T2)

T1UT2 = 7 when Ti1#T2
T1 when Ti1=T2

Galois Connections

“specification effect”

= type“-»(:}type)
v(B) = {B}

Y(gT1-0gT2) = {T1-T2 | T1€y(QgT1) A T2€6Y(QgT2)}

y(?7) = {1t | T€Etype}

Non-constructive

Constructive

a : P(type) - type’
a({t2..Tn}) = u n(Ts)

n : type - type?
r]([EB) = [EB
N(ti-T2) = n(t1)-n(T2)

T1UT2 = 7 when Ti1#T2
T1 when Ti1=T2

In Agda

In Agda

data €y[] : type - type# - Set where
(B) : (B) €yl (B)]
(=) o+ V {T1# T24 T1 T2}
-» T1 €y[T1#]
» T2 €y[T2¢]
» (T1 (-) T2) €yl T1¢ () T2¢]
(7) + V At} -t €yl (7) 1]

In Agda

data €y[] : type - type# - Set where
(B) : (B) €yl (B)]
(=) o+ V {T1# T24 T1 T2}
-» T1 €y[T1#]
» T2 €y[T2¢]
» (T1 (-) T2) €yl T1¢ () T2¢]
(7) + V At} -t €yl (7) 1]

n : type -» typet
nt(B)) = (B)
n(t: (=) 12) = n(t2) (=) n(t2)

In Agda

data €y[] : type - type# - Set where

(B) + (B) €yl (B) 1]
(

(=) V {Tt1# T2¢ T1 T2} - OCaml: Datatype

> T1 €y[T1#] | .
5 T2 Ey[T2#] Math: Inductive Judgment

» (T1 (-) T2) €yl T1¢ () T2¢]
(?7) + VA{t} -t eyl (7)]

n : type - typet
n((B)) = (B) - OCaml: Function
n(tx (=) T2) = n(t1) (=) n(t2) - Math: Computable Function

Constructive Galois
Connections

Extracting verified computation from proof
assistants Is based on constructive logic

Problem: classical Galois connections are
nonconstructive

Solution: design a constructive variant of Galois
connections and use those

Bonus: simpler proofs (n is simpler than a)

Formally Veritying Derived
Gradual Type Systems

F V(x).P(x)

formal verification

'y
/ = {'r@r-l-}

abstract interpretation

Formally Veritying Derived
Gradual Type Systems

e : 7 <_,I—‘v’(x).P(x)

gradual types formal verification

N\
/ 2 {-,0,+}

abstract interpretation

What | Did

* 1. Formally verified gradual type system in AGT

e 2. Simplified some proofs by using n instead of a

‘Simplitied” How?

correct:codﬁ:/nn : V(7 : type) —>77t-(cod-'r) = Cod"'(nt°7')
correct[cod?]/mm L = refl
correct[cod']/mm (B) = refl

correct[cod!]/mm (71 (=) 2) = refl

VS

correct[cod! | /ry : V 74 - (pure-n*)# - ((pure: cod)* - (v*- 7))
C pure- cod*- 7}
correct[cod*)/my 7% = extensionality[P] (Q 7%) where
Q : V7 7§ - 7§ € (pure-') - ((pure- cod)x - (v**7{))

— 74 € pure- cod*- 7}
Q_.L(AP.L,(3P.L,1,1),1) =1 X 2
Q.7m_(3P_,3BP_,1,),_)=T
Q.(B).L.(3P.L,(3P.(B),(B), L), 1) =1
QU= AEPH, GP((=>)m)
, (L{~) ney[r8]) , mem) , rien[n]) =
complete Toey[74] © respectful-arg 71572 ® Tien[7]

Going Forward

* I'm interested in applying verified AGT technigue to
type systems with blame and type polymorphism.

 Combination is currently an open problem in PL

* I'm interested in verified static analysis frameworks
building on constructive Galois connections.

lakeaways

Gradual type systems are dual to precise ones: allow when
success guaranteed vs allow when success plausible.

It you want to “understand” gradual type systems in the
abstract, read the AGT paper [Garcia,Clark, Tanter;2016].

Designing a gradual type system is fundamentally hard,
but there Is a method to the madness.

If you want to use Galois connections in a formal
development (Cog/Agda), read the Constructive GCs
paper [Darais,Van Horn;2015 Draft].

