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 Challenge:
Gradual type systems are ad-hoc and sometimes wrong

* Insight:
Guide design through abstract interpretation
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| ‘It you say so..."



Consistent Equality

gi~gt



Consistent Equality
gT~QgT

’ . [ 1 : type* -» Z(type)
meaning” of a [B] = {B}

gradua| ’[ype [gTi-gT2] = {T1-T2 | T1€[QgT1] A T2€[QgT2]}
[?] = {t | Tt€type}




Consistent Equality
gT~QgT

’ . [ 1 : type* -» Z(type)
meaning” of a [B] = {B}

gradua| ’[ype [gTi-gT2] = {T1-T2 | T1€[QgT1] A T2€[QgT2]}
[?] = {t | Tt€type}

T1€[QT1]
consistent equalities 12€[gT2] T1 = T2
are "plausibilities” =================




The Whole AGT Story

The “meaning” function [ ]| forms a Galois
connection between precise and gradual types.

Guided by the Galois connection, define consistent
equality and derive dynamic and static semantics.

“Semantics design by abstract interpretation.”
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 Challenge:
Galois connections are problematic in formal verification

* Insight:
|solate the problem with a meta- “specification” effect
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In Agda

data €y[ ] : type - type# - Set where

(B) + (B) €yl (B) 1]
(

(=) V {Tt1# T2¢ T1 T2} - OCaml: Datatype

> T1 €y[ T1# ] | .
5 T2 Ey[ T2# ] Math: Inductive Judgment

» (T1 (-) T2) €yl T1¢ () T2¢ ]
(?7) + VA{t} -t eyl (7) ]

n : type - typet
n((B)) = (B) - OCaml: Function
n(tx (=) T2) = n(t1) (=) n(t2) - Math: Computable Function




Constructive Galois
Connections

Extracting verified computation from proof
assistants Is based on constructive logic

Problem: classical Galois connections are
nonconstructive

Solution: design a constructive variant of Galois
connections and use those

Bonus: simpler proofs (n is simpler than a)
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What | Did

* 1. Formally verified gradual type system in AGT

e 2. Simplified some proofs by using n instead of a



‘Simplitied” How?

correct:codﬁ:/nn : V(7 : type) —>77t-(cod-'r) = Cod"'(nt°7')
correct[cod?]/mm L = refl
correct[cod']/mm (B) = refl

correct[cod!]/mm (71 (=) 2) = refl

VS

correct[cod! | /ry : V 74 - (pure-n*)# - ((pure: cod)* - (v*- 7))
C pure- cod*- 7}
correct[cod*)/my 7% = extensionality[P] (Q 7%) where
Q : V7 7§ - 7§ € (pure-') - ((pure- cod)x - (v**7{))

— 74 € pure- cod*- 7}
Q_.L(AP.L,(3P.L,1,1),1) =1 X 2
Q.7m_(3P_,3BP_,1,),_)=T
Q.(B).L.(3P.L,(3P.(B),(B), L), 1) =1
QU= AEPH, GP((=>)m)
, (L{~) ney[r8]) , mem) , rien[n]) =
complete Toey[74] © respectful-arg 71572 ® Tien[7 ]



Going Forward

* I'm interested in applying verified AGT technigue to
type systems with blame and type polymorphism.

 Combination is currently an open problem in PL

* I'm interested in verified static analysis frameworks
building on constructive Galois connections.



lakeaways

Gradual type systems are dual to precise ones: allow when
success guaranteed vs allow when success plausible.

It you want to “understand” gradual type systems in the
abstract, read the AGT paper [Garcia,Clark, Tanter;2016].

Designing a gradual type system is fundamentally hard,
but there Is a method to the madness.

If you want to use Galois connections in a formal
development (Cog/Agda), read the Constructive GCs
paper [Darais,Van Horn;2015 Draft].



