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Your Personal Data



Good uses of data

 Improve a product


 Enable better business decisions


 Support fundamental research



Bad uses of data

 Stalking and harassment


 Unfair business advantages


 Threats and blackmail



Good ⌁ Bad



Good ⌁ Bad



Good ⌁ Bad



Non-solution: 
Anonymization
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Non-solution: 
Anonymization



Dataset Visible Auxiliary Data Attack

Anonymized Netflix 
Viewer Data ID + ratings + dates IMDB Re-identification 

(what movies you watch)

NYC Taxi Data ID + time + coordinates 
+ fare + tip

Geotagged celebrity 
photos

Re-identification 
(celebrity trips +  

tip amounts)

Anonymized AOL 
Search Data ID + query text Ad-hoc Re-identification 

(search history)

Massachusetts 
Hospital Visit Data

All except: 
name + address + SSN

Public voting 
records (name, 

address, birth date)

Re-identification

(health records, 

diagnoses + 
prescriptions)

Non-solution: 
Anonymization





For any ‘anonymized’ dataset, either the data is useless, 
or there exists an auxiliary dataset that re-identifies it.

–Dwork & Roth (The Algorithmic Foundations of Differential Privacy) 



Almost-solution: 
Aggregate statistics



artificial intelligence  
= 

aggregate statistics 
?















✓



✗





Almost-solution: 
Aggregate statistics

 Clearly not acceptable for small datasets


 Clearly acceptable for “well-behaved” massive datasets


 Central idea behind modern interpretations of 
“privacy-sensitive data analysis”


 Must be careful with artificial intelligence applications



EU and GDPR
 Data breaches (security/access) = financial liability 

 
Fines: MAX( €20 Million , 4% annual global turnover )


 Sensitive vs aggregate data – only liable for sensitive 
 
More sensitive data = more financial risk 
 
Aggregate data = cannot be re-identified


 Also: California CCPA modeled on GDPR



Security Privacy



Security Privacy

SENSITIVE 
DATA

Access



Security Privacy

SENSITIVE 
DATA

SENSITIVE 
DATA

AGGREGATE 
STATISTICS

Access

Computation



Differential Privacy 
= 

Aggregate Statistics 
+ 

Random noise 
= 

No-reidentification guarantees 
= 

0 Financial liability (GDPR)



 Differential Privacy


 Program Analysis


 Duet


 Deep Learning



Differential Privacy

How many people 
named Éric 

live in Chile?



How many people named Éric live in Chile?
1. How sensitive is this query?

+ Éric

= 60,000 = 60,001



How many people named Éric live in Chile?
1. How sensitive is this query?

+ <anyone>

= 60,000 = 60,001



How many people named Éric live in Chile?
1. How sensitive is this query?

+ <anyone>

= 60,000 = 60,001

sensitivity = 1



How many people named Éric live in Chile?
2. Add noise to the result with scale ~ sensitivity

+ <anyone>

= 60,000 
+ <noise>

= 60,001 
+ <noise>



How many people named Éric live in Chile?
2. Add noise to the result with scale ~ sensitivity

+ <anyone>

= 60,000 
+ <noise>

= 60,001 
+ <noise>



•

+ Éric     ?or



How many people 
named Éric 

live in Chile?

How many people 
named Éric 

live at <specific address>



How many people 
named Éric 

live in Chile?

How many people 
named Éric 

live at <specific address>

 Same sensitivity (= 1) 

 Same amount of noise 

 Very different utility



• •

= 59,900 = 60,100

How many people 
named Éric 

live in Chile?

How many people 
named Éric 

live at <specific address>

“roughly 60,020 people named Éric live in Chile”



= -100 = 100

How many people 
named Éric 

live in Chile?

How many people 
named Éric 

live at <specific address>

“roughly 37 people named Éric live at <specific address>”

• •



1 Sample



3 Samples



6 Samples



1,000,000 Samples



Privacy Cost
 How many samples needed to re-identify participant


 Quantity = distance between distributions


 Quantity = directly interpretable as privacy “budget”

ε



“Differential privacy describes a promise, made by 
a data holder, or curator, to a data subject: ‘You will 
not be affected, adversely or otherwise, by allowing 

your data to be used in any study or analysis, no 
matter what other studies, data sets, or information 

sources, are available.’” 
–Dwork & Roth (The Algorithmic Foundations of Differential Privacy) 



DP Theorems
 Mechanism: 

Adding Laplace noise scaled by ~s/ε to an s-sensitive query 
achieves ε differential privacy


 Post-processing: 
A differentially private result can be used any number of 
times, and for any purpose, including arbitrary linking with 
auxiliary data


 Composition:  
An ε₁-DP query followed by an ε₂-DP query is (ε₁+ε₂)-DP


 New data = fresh budget



Who is using DP?

 Apple


 Google


 US NIST


 US Census


 GDPR working documents



DP Challenges
 How to achieve better utility/accuracy?


 Privacy frameworks (hard proofs): 
(ε,δ), Rényi, ZC, TZC


 Sensitivity frameworks (hard to compose): 
Local sensitivity


 Stronger composition (less expressive): 
Advanced composition


 Smarter “billing” (hard to use): 
Independent budget for different sensitive attributes



DP Challenges

 What if I don’t trust the computation provider?


 Decentralized model: 
Local differential privacy


 Cryptographic techniques: 
Secure multi-party communication, secure enclaves





 Differential Privacy


 Program Analysis


 Duet


 Deep Learning



Why Program Analysis
 1. How sensitive is the query? (uncomputable in general) 

 
2. Add-noise 
 
3. How private is the result? (uncomputable in general)


 PA/PL literature about sensitivity analysis for programs 
(assumed: Laplace noise gives ε privacy) 
(focus: automation+proofs)


 DP literature about privacy analysis for algorithms 
(assumed: count query is 1 sensitive) 
(focus: precision+proofs)



add 
noise 

(mechanism)

sensitivity

privacy



Operation Assumption Sensitivity

f(x) = x 1-sensitive in x

f(x) = count(x) 1-sensitive in x

f(x,y) = x+y 1-sensitive in x

1-sensitive in y

f(x,y) = x*y ∞-sensitive in x

∞-sensitive in y

f(x) = g(h(x)) g is α-sensitive

h is β-sensitive αβ sensitive in x 



f(x,y) = k(g(x) + h(y))



f(x,y) = k(g(x) + h(y))

g is α-sensitive 
h is β-sensitive 
k is γ-sensitive 

⟹ 
f is γ(α+0)-sensitive in x 
f is γ(0+β)-sensitive in y



f ∈ ℝ →ˢ ℝ



Sensitivity

 f(x) is s-sensitive in x iff 

 when |v₁ - v₂| ≤ d 

 then |f(v₁) - f(v₂)| ≤ sd 

 When the input wiggles by some amount, how much does 
the output wiggle.



Sensitivity

 |4 - 5| = 1  ∈ ℝ



Sensitivity

+ Éric

 |4 - 5| = 1

 |          -           |  =  1

 ∈ ℝ

 ∈ 𝔻𝔹



Sensitivity

+ Éric

 |4 - 5| = 1

 |          -           |  =  1

 ∈ ℝ

 ∈ 𝔻𝔹

Arbitrary metric space



Sensitivity

 f(x) is s-sensitive in x iff 

 when |v₁ - v₂|τ₁ ≤ d 

 then |f(v₁) - f(v₂)|τ₂ ≤ ds 

 When the input wiggles by some amount, how much does 
the output wiggle.



 Pr[f(v₂)] eε Pr[f(v₁)]

Privacy

 ≤

 f(x) is ε-private in x iff 

 when |v₁ - v₂|τ₁ ≤ 1

 When the input wiggles by one, how close are the 
resulting distributions.

 then



Privacy

 Pr[f(v₂)]

 Pr[f(v₁)]
 ≤ eε ε ————————— max

 f(x) is ε-private in x iff 

 when |v₁ - v₂|τ₁ ≤ 1

 then

 When the input wiggles by one, how close are the 
resulting distributions.



Privacy

 Pr[f(v₂)]

 Pr[f(v₁)]
 ≤ ε ————————— max ㏑

 f(x) is ε-private in x iff 

 when |v₁ - v₂|τ₁ ≤ 1

 When the input wiggles by one, how close are the 
resulting distributions.

 then



Privacy

 Pr[f(v₂)]

 Pr[f(v₁)]
 dε ≤ ————————— max ㏑

 f(x) is ε-private in x iff 

 when |v₁ - v₂|τ₁ ≤ d

 When the input wiggles by one, how close are the 
resulting distributions.

 then



Privacy

 f(x) is ε-private in x iff 

 when |v₁ - v₂|τ₁ ≤ d

 then  dε ≤ |f(v₁) - f(v₂)|D

 where  
|f(x) - f(y)|D ≜ max ㏑(Pr[f(x)]/Pr[f(y)])



Privacy = Sensitivity
Privacy Analysis = Sensitivity Analysis



laplace ∈ ℝ →ᵋ 𝒟(ℝ) 

release ∈ τ →∞ 𝒟(τ) 

post-pr ∈ 𝒟(τ₁) , (τ₁ →∞ 𝒟(τ₂)) 
        → 𝒟(τ₂)

Privacy = Sensitivity
Privacy Analysis = Sensitivity Analysis



PA Challenges

 Complexity (hopefully linear)


 Precision (hopefully good)


 Expressiveness (objects, HO functions, abstraction)


 Exotic DP definitions (no definable metric)


 Trust (design? implementation?)



 Differential Privacy


 Program Analysis


 Duet


 Deep Learning

Dwork, McSherry,  
Nissim,Smith–2006
Dwork,Roth–2014

Reed,Pierce–2010

Near,Darais,(+9)–2019



Duet: Goals

 Support stronger variants of DP (ε,δ)


 Support machine learning algorithms


 Precise analysis


 Tractable algorithm


 Trustworthy design





ε-DP

 f(x) is ε-private in x iff 

 when |v₁ - v₂|τ₁ ≤ 1 

 then Pr[f(v₁)] ≤ eᵋPr[f(v₂)] 

 When the input wiggles by one, how close are the 
resulting distributions.



(ε,δ)-DP

 f(x) is (ε,δ)-private in x iff 

 when |v₁ - v₂|τ₁ ≤ 1 

 then Pr[f(v₁)] ≤ eᵋPr[f(v₂)] + δ 

 When the input wiggles by one, how close are the 
resulting distributions, with high (1-δ) probability.



      f ∈ ℝ →² ℝ 
laplace ∈ ℝ →ᵋ 𝒟(ℝ) 
—————————————————————— 
laplace∘f ∈ ℝ →²ᵋ 𝒟(ℝ)

ε-DP (ε,δ)-DP



      f ∈ ℝ →² ℝ 
laplace ∈ ℝ →ᵋ 𝒟(ℝ) 
—————————————————————— 
laplace∘f ∈ ℝ →²ᵋ 𝒟(ℝ)

    f ∈ ℝ →² ℝ 
gauss ∈ ℝ →ε,δ 𝒟(ℝ) 
—————————————————————— 
gauss∘f ∈ ℝ →2ε,2eᵋδ 𝒟(ℝ)

ε-DP (ε,δ)-DP



Duet Design

 Scaling is *very* imprecise, language should disallow it 
 
In previous analyses, scaling is pervasive–no way out


 We separate languages for sensitivity and privacy 
 
Add APIs for data analysis and machine learning 
 
Proofs of privacy for any “well-typed” program











θ X y



θ X

θ

y }



θ X }
X

y



θ X }

y

y



θ X y

}how to improve θ?



ℓ = L2-norm

required by mgauss DP-mechanism

θ X y



model
data

labels



model
data

labels

how to improve the model 



itersdata
labels rate



itersdata
labels rate

baby 
model



itersdata
labels rate

smarter model

baby 
model



Guaranteed Privacy = 



Privacy = 









Duet will be open source on GitHub (soon)



 Differential Privacy


 Program Analysis


 Duet


 Deep Learning



Deep Learning
 Gradients:


 Bounded sensitivity for convex systems


 Unbounded sensitivity for non-convex systems


 Deep Learning:


 Non-convex


 State of the art:


 Aggressive clipping during training (to bound sensitivity)



Deep Learning
 Recent results:


 Local sensitivity + smoothness instead of GS


 Analytical derivative can bound LS + smoothness


 Hypothesis:


 Local sensitivity + smoothness for neural networks


 Gradient of the gradient via AD^2


 Compositional smoothness analysis


 Improved accuracy over naive clipping



IN1

IN2

OUT

N11

N12

N21



n11 = relu(w111*in1 + w112*in2) 
n12 = relu(w121*in1 + w122*in2) 
n21 = sigm(w211*n11 + w212*n12) 
return n21 

IN1

IN2

OUT

N11

N12

N21



Neural Networks

 first order, stateless programs with free variables (weights)


 no branching control flow


 differentiable

n11 = relu(w111*in1 + w112*in2) 
n12 = relu(w121*in1 + w122*in2) 
n21 = sigm(w211*n11 + w212*n12) 
return n21 



NN Training

 Analytic gradient used for training


 Efficient automatic differentiation algorithms (backprop)


 We need gradient (for local sensitivity) of the gradient 

 Run backprop again – 2nd order gradient 



AD

 Forward mode (1st derivative): dual numbers <v,d> 

 Forward mode (2nd derivative): ternary numbers <v,d₁,d₂>


 Reverse mode (1st derivative): forward backward passes


 Reverse mode (2nd derivative): FBFB passes


 (+ smoothness analysis)



Duet Collaborators

 JOSEPH P. NEAR, University of Vermont 
CHIKE ABUAH, University of Vermont 
TIM STEVENS, University of Vermont 
PRANAV GADDAMADUGU, University of California, Berkeley  
LUN WANG, University of California, Berkeley  
NEEL SOMANI, University of California, Berkeley 
MU ZHANG, Cornell University 
NIKHIL SHARMA, University of California, Berkeley 
ALEX SHAN, University of California, Berkeley 
DAWN SONG, University of California, Berkeley 



Duet: PL for DP

•

+ <me>     ?or

Guaranteed Privacy =

Machine Learning Algorithm =



(END)


