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Good uses of data

Improve a product
Enable better business decisions

Support fundamental research



Bad uses of data

Stalking and harassment
Unfair business advantages

Threats and blackmaill
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Non-solution:
Anonymization

First Name Last Name  University First Name Last Name  University
David Darais U Vermont HHHH#H HHHH#H U Vermont
Eric Tanter U Chile HHHHH HH#H#HH U Chile

Federico Olmedo U Chile HHH### HHt### U Chile



Non-solution:
Anonymization



Non-solution:
Anonymization

Dataset Visible Auxiliary Data Attack
Anonymized Netflix . Re-identification
Viewer Data D) - RN o CfEviee LRlz (what movies you watch)

Re-identification

ID + time + coordinates Geotagged celebrity (celebrity trips +

NYC Taxi Data

+ fare + tip photos tip amounts)
Anonymized AOL Re-identification
Search Data 12 VSl e ACRIIZe (search history)
Public votin Re-identification
Massachusetts All except: J (health records,

records (name,

Hospital Visit Data name + address + SSN address, birth date)

diagnoses +
prescriptions)
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For any ‘anonymized’ dataset, either the data is useless,
or there exists an auxiliary dataset that re-identifies it.

—Dwork & Roth (The Algorithmic Foundations of Differential Privacy)



Almost-solution:
Aggregate statistics
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artificial intelligence

aggregate statistics
?
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Almost-solution:
Aggregate statistics

Clearly not acceptable for small datasets
Clearly acceptable for “well-behaved” massive datasets

Central idea behind modern interpretations of
“privacy-sensitive data analysis”

Must be careful with artificial intelligence applications



EU and GDPR

Data breaches (security/access) = financial liability

Fines: MAX( €20 Million , 4% annual global turnover)

Sensitive vs aggregate data — only liable for sensitive
More sensitive data = more financial risk

Aggregate data = cannot be re-identified

Also: California CCPA modeled on GDPR
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Differential Privacy

Aggregate Statistics
+
Random noise

No-reidentification guarantees

0 Financial liability (GDPR)



Differential Privacy
Program Analysis

Duet

Deep Learning



Differential Privacy

How many people
named Eric
live in Chile?




How many people named Eric live in Chile?

1. How sensitive is this query?

+ Eric

= 60,000 = 60,001




How many people named Eric live in Chile?

1. How sensitive is this query?

+ <anyone>

(@

= 60,000 = 60,001



How many people named Eric live in Chile?

1. How sensitive is this query?

+ <anyone>

(@

= 60,000 = 60,001

sensitivity = 1



How many people named Eric live in Chile?

2. Add noise to the result with scale ~ sensitivity

+ <anyone>

(@

= 60,000 = 60,001
+ <hoise> + <hoise>



How many people named Eric live in Chile?

2. Add noise to the result with scale ~ sensitivity

= 60,000
+ <hoise>

+ <anyone>

= 60,001
+ <hoise>






How many people How many people
named Eric named Eric
live in Chile? live at <specific address>



How many people How many people
named Eric named Eric
live in Chile? live at <specific address>

Same sensitivity (= 1)
Same amount of noise

Very different utility



How many people

named Eric
live in Chile?
S T
= 59,900 = 60,100

“roughly 60,020 people named Eric live in Chile”



1]

How many people
named Eric
live at <specific address>

=-100 =100

“roughly 37 people named Eric live at <specific address>"



1 Sample
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Privacy Cost

How many samples needed to re-identify participant
Quantity = distance between distributions

Quantity = directly interpretable as privacy “budget”

&



“Differential privacy describes a promise, made by
a data holder, or curator, to a data subject: ‘You will
not be affected, adversely or otherwise, by allowing
your data to be used in any study or analysis, no
matter what other studies, data sets, or information
sources, are available.’

—Dwork & Roth (The Algorithmic Foundations of Differential Privacy)



DP Theorems

Mechanism:

Adding Laplace noise scaled by ~s/e to an s-sensitive query
achieves ¢ differential privacy

Post-processing:

A differentially private result can be used any number of
times, and for any purpose, including arbitrary linking with
auxiliary data

Composition:
An g,-DP query followed by an €,-DP query is (e,+€,)-DP

New data = fresh budget



Who is using DP?

Apple
Google
US NIST

US Census

GDPR working documents



DP Challenges

How to achieve better utility/accuracy?

Privacy frameworks (hard proofs):
(€,0), Rényi, ZC, TZC

Sensitivity frameworks (hard to compose):
Local sensitivity

Stronger composition (less expressive):
Advanced composition

Smarter “billing” (hard to use):
Independent budget for different sensitive attributes



DP Challenges

What if | don’t trust the computation provider?

Decentralized model:
Local differential privacy

Cryptographic techniques:
Secure multi-party communication, secure enclaves
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Fig. 7. Noise necessary to achieve (1, 107°)-differential privacy for an iterative algorithm (gradient descent)
on a dataset of 50,000 samples, under variants of differential privacy. RDP, zCDP, and tCDP all require the
same level of noise, and therefore their plots overlap (on the black line).
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Why Program Analysis

1. How sensitive is the query? (uncomputable in general)
2. Add-noise

3. How private is the result? (uncomputable in general)

PA/PL literature about sensitivity analysis for programs
(assumed: Laplace noise gives € privacy)
(focus: automation+proofs)

DP literature about privacy analysis for algorithms
(assumed: count query is 1 sensitive)
(focus: precision+proofs)



sensitivity

add
noise
(mechanism)

privacy



Operation Assumption Sensitivity

f(x) = x 1-sensitive in X
f(x) = count(x) 1-sensitive in x
1-sensitive In X

f(x, = X+ .
X,y) Y 1-sensitive in y
F(X,y) = xky co-Sensitive In X

co-Sensitive in y

g Is a-sensitive

Fix) = glh{x)) h is B-sensitive

ap sensitive in X



f(x,y) k(g(x) + h(y))



f(x,y) = k(g(x) + h(y))

g 1s a-sensitive
h 1s B-sensitive
K 1s y-sensitive
—
f is y(a+@)-sensitive in Xx
f is y(0+B)-sensitive in y
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Sensitivity

f(x) 1s s—-sensitive in x iff
when |[vi - v2| = d

then [f(vi) - f(v2)]| = sd

When the input wiggles by some amount, how much does
the output wiggle.



Sensitivity

4 - 5] =1

€ R



Sensitivity




Sensitivity

+ Eric

Arbitrary metric space



Sensitivity

f(x) 1s s—-sensitive in x iff
when |vi — vz fiy= d

then [f(vi) - f(v2)|z)= ds

When the input wiggles by some amount, how much does
the output wiggle.



Privacy

f(x) is s-private in x iff
when |[vi — vz |+« = 1

then Pr[f(vi)] = esPr[f(vz2)]

When the input wiggles by one, how close are the
resulting distributions.



Privacy

f(x) is e-private in x iff
when |vi = v2|: =1
Prif(vi)]

then max < et
Prif(vz2)]

When the input wiggles by one, how close are the
resulting distributions.



Privacy

f(x) is e-private in x iff
when |vi = v2|: =1

Prif(vi)]
then max In < €
Prif(vz2)]

When the input wiggles by one, how close are the
resulting distributions.



Privacy

f(x) is e-private in x iff
when |vi — v2|:, = d

Prif(vi)]
then max In < ds
Prif(vz2)]

When the input wiggles by one, how close are the
resulting distributions.



Privacy

f(x) is s—private in x iff
when |vi — vz |+« = d
then |f(vi) - f(Vz)@s de

where
| f(x) = f(y)|p £ max In(Pr[f(x)]1/Prif(y)])



Privacy = Sensitivity
Privacy Analysis = Sensitivity Analysis



Privacy = Sensitivity
Privacy Analysis = Sensitivity Analysis
laplace € R -»= 9(R)
release € T - 9(T)

post-pr € @(t1) , (t1 - 2(12))
> 9(12)



PA Challenges

Complexity (hopefully linear)

Precision (hopefully good)

Expressiveness (objects, HO functions, abstraction)
Exotic DP definitions (no definable metric)

Trust (design”? implementation?)



Differential Privacy
Program Analysis

Duet

Deep Learning

Dwork, McSherry,
Nissim,Smith—-2006
Dwork,Roth-2014

Reed,Pierce-2010

Near,Darais,(+9)-2019



Duet: Goals

Support stronger variants of DP (g,0)
Support machine learning algorithms
Precise analysis

Tractable algorithm

Trustworthy design
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e-DP

f(x) is e-private in x iff
when |[vi — vz |+, = 1

then Prf(vi)] = e=Pr[f(vz2)]

When the input wiggles by one, how close are the
resulting distributions.



(€,6)-DP

f(x) is (g,6)-private in x iff
when |[vi — vz |+, = 1

then Pr[f(vi)] = esPr[f(vz2)] + 6

When the input wiggles by one, how close are the
resulting distributions, with high (1-6) probability.



e-DP (e,0)-DP

feER-2R
laplace € R -= 9(R)

laplaceof € R -2 P (R)



e-DP (e,0)-DP

feER -2 R feER -?2R
laplace € R -= 9(R) gauss € R -9 (R)

laplaceof € R -2° 2(R) | gaussef € R -2¢.2¢°0 G(R)



Duet Design

Scaling is *very* imprecise, language should disallow it
In previous analyses, scaling is pervasive—no way out
We separate languages for sensitivity and privacy

Add APls for data analysis and machine learning

Proofs of privacy for any “well-typed” program
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LV?[G;X, y] : M? [1,n] R —ou
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how to improve 67

=

LVI[8;X.y] : M [1,n] R —ooo M’ [1,n] D —o1 D —oy MY[1,n] R




{l,n| R

LV?[G;X, AR R@l, n| R —ou I\@[l,n] D —o1 D —oq \'

f = L2-norm
required by mgauss DP-mechanism



model
data

labels

|

noisy-grad(0,X,y,e,8) =
let s =R|[1.0]/real (rows X) in
let z = zeros (cols X) in
let gs = mmap-row (sA X; y; =
LV5[0; Xi,yi]) X y in
let g = fld-row (sA x1 x2 = x1 + x2) z gs in
let gs = map (SA x = s-x) g in
mgauss|s, €, 8| <X,y> {gs}




model
data

labels

|

noisy-grad(0,X,y,€,8) =
let s =R[1.0|/real (rows X) in
let z = zeros (cols X) in
let gs = mmap-row (sA X; y; =
LV5[6; Xi,yi]) X y in
let g = fld-row (sA x1 x2 = x1 + x2) z gs in
let gs = map (sA x = s-x) g in
mgauss|s, €, 6| <X,y> {gs}

how to improve the model V. ‘#‘

— ™




data iters
labels | rate

Y

noisy-gradient-descent()v( . k.n,e,8) =
let X; = box (mclip’? X) in
let 6y = zeros (cols X71) in
loop|d’] k on Oy <X1,y> {t,0 =
gp < noisy-grad 6 (unbox X1) y € 6 ;
return 0 —-n-gp }




data iters
labels | rate

Y

noisy-gradient-descent()v( . k.n,e,8) =
let X; = box (mclip’? X) in
let 6y = zeros (cols X1) in «— baby

loop|d’] k on Oy <X1,y> {t,0 =

gp < noisy-grad 6 (unbox X1) y € 6 ;
return 0 —-n-gp }



data iters
labels | rate

Y

noisy-gradient-descent()v( . k.n,e,8) =
let X7 = box (mclip™? X) in
let 6y = zeros (cols X7) in «—— Paby

model
loop|d’] k on Oy <X1,y> {t,0 =

gp < noisy-grad 6 (unbox X1) y € 6 ;
return 0 —n-gp, }

smarter model /ts i’ N

|




noisy-gradient-descent(X, y, k,n, €,5) =
let X; = box (mclip’? X) in
let 6y = zeros (cols X7) in
loop|d’] k on Oy <X1,y> {t,0 =
gp < noisy-grad 6 (unbox X1) y € 6 ;
return 0 —n-gp, }

Guaranteed Privacy =

(2e+/2k log(1/5"),ké + &)




frank-wolfe X y k € § =
let X; = clip-matrix; , X in
let d = cols X in
let 6p = zeros d in
let idxs = mcreatero|1,2-d|{i,j =
(j mod d,sign(j—d))} in
loop [8] k on 6y {t,0 =
let pu =1.0/((real t) + 2.0) in
let g = LV%{;[@;Xl,y] in
(i,s) « exponential[mws1 <
s - g#(0,1]} ;
let gp = (zeros d)#[0,i +— s - 100] in
return ((L.O—p) - 0) + (g - gp) }

€| idxs {(i,s) =

Privacy = (2e+/2k log(1/8), §)



Noisy Gradient Descent

Accuracy

Accuracy

Synthetic Adult KDDCup99 Facebook
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Fig. 10. Accuracy Results for Noisy Gradient Descent (Top) and Noisy Frank-Wolfe (Bottom).



Technique Ref. § Privacy Concept

Optimization Algorithms

Noisy Gradient Descent 7,39] 6.1 Composition

Gradient Descent w/ Output Perturbation [43] 6.2 Parallel Composition (sensitivity)
Noisy Frank-Wolfe (40] 6.3 Exponential mechanism
Variations on Gradient Descent

Minibatching 7] 6.4 Amplification by subsampling
Parallel-composition minibatching — 6.5 Parallel composition

Gradient clipping [3] 6.6  Sensitivity bounds
Preprocessing & Deployment

Hyperparameter tuning [11] A.1 Exponential mechanism
Adaptive clipping — 6.7  Sparse Vector Technique
Z-Score normalization [2] A.2 Composition

Combining All of the Above 6.8 Composition



Technique LOC Time (ms)

Noisy G.D. 23 0.51ms
G.D. + Output Pert. 25 0.39ms
Noisy Frank-Wolfe 31 0.59ms
Minibatching 26 0.51ms
Parallel minibatching 42 0.65ms
Gradient clipping 21 0.40ms
Hyperparameter tuning 125 3.87ms
Adaptive clipping 68 1.01ms

Z-Score normalization 104 1.51ms



Duet will be open source on GitHub (soon)
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Deep Learning

Gradients:
Bounded sensitivity for convex systems
Unbounded sensitivity for non-convex systems
Deep Learning:
Non-convex
State of the art:

Aggressive clipping during training (to bound sensitivity)



Deep Learning

Recent results:
Local sensitivity + smoothness instead of GS
Analytical derivative can bound LS + smoothness
Hypothesis:
Local sensitivity + smoothness for neural networks
Gradient of the gradient via AD/2
Compositional smoothness analysis

Improved accuracy over naive clipping






N1l = relu(wlllxinl + wl12%in2)
Nn12 = relu(wl21xinl + wl22%in2)
n21 = sigm(w211xn1ll + w212%nl12)

return n21l



Neural Networks

N1l = relu(wlllxinl + wl12%in2)
Nn12 = relu(wl21%xinl + wl22%in2)
n21 = sigm(w211%nl1ll + w212%n12)

return n2l

first order, stateless programs with free variables (weights)
no branching control flow

differentiable



NN Training

Analytic gradient used for training
Efficient automatic differentiation algorithms (backprop)
We need gradient (for local sensitivity) of the gradient

Run backprop again — 2nd order gradient



AD

Forward mode (1st derivative): dual numbers <v, d>
Forward mode (2nd derivative): ternary numbers <v,d,,d,>
Reverse mode (1st derivative): forward backward passes
Reverse mode (2nd derivative): FBFB passes

(+ smoothness analysis)



Duet Collaborators

JOSEPH P. NEAR, University of Vermont

CHIKE ABUAH, University of Vermont

TIM STEVENS, University of Vermont

PRANAV GADDAMADUGU, University of California, Berkeley
LUN WANG, University of California, Berkeley

NEEL SOMANI, University of California, Berkeley

MU ZHANG, Cornell University

NIKHIL SHARMA, University of California, Berkeley

ALEX SHAN, University of California, Berkeley

DAWN SONG, University of California, Berkeley



Duet: PL for DP

IR\ Machine Learning Algorithm =

L

\) noisy-gradient-descent(X, y, k, 1, €, §)
let X1 = box (mclip? X) in

let 6y = zeros (cols X7) in

Y b, loop[d’] k on Oy <X1,y> {t,0 =

—— | e, | gp < noisy-grad 6 (unbox X1) y € J ;

return 0 —-n-gp, }

Guaranteed Privacy =

(2e+/2k log(1/687), kS + &)




(END)



