Data-oblivious Computation

David Darais (Galois, Inc.)

A common paradigm for private and secure computation

???

Bubble sort is the worst

???

Bubble sort is the best

Bubble sort is the worst

Insertion sort is mediocre

Merge sort is the best

???

Bubble sort is the best

Insertion sort is (also) the best

Merge sort is the worst

Bubble sort is the worst

Insertion sort is mediocre

Merge sort is the best

RAM/array access is O(1)

Data structures + recursion = easy

???

Bubble sort is the best

- Insertion sort is (also) the best
- Merge sort is the worst
- RAM/array access is O(log(N))
- Data structures + recursion = hard

Bubble sort is the worst

Insertion sort is mediocre

Merge sort is the best

RAM/array access is O(1)

Data structures + recursion = easy

Data-oblivious Computation

Bubble sort is the best

Insertion sort is (also) the best

Merge sort is the worst

RAM/array access is O(log(N))

Data structures + recursion = hard

Fully Homomorphic Encryption

Secure Multiparty Computation

Information Flow Control

Differential Privacy

Protects secrets during computation

Fully Homomorphic Encryption

Secure Multiparty Computation

Protects secrets *after release*

Constant Time Execution

Information Flow Control

Differential Privacy

Protects secrets *during computation*

Fully Homomorphic Encryption

Secure Multiparty Computation

Performance is critical **Correctness** is critical

Protects secrets *after release*

Constant Time Execution

Information Flow Control

Differential Privacy

Protects secrets *during computation*

Fully Homomorphic Encryption

Secure Multiparty Computation Constant Time

Execution

Traditional Computation

Protects secrets *after release*

Information Flow Control

Differential Privacy

Data-oblivious Computation

Bubble sort is the worst

Insertion sort is mediocre

Merge sort is the best

RAM/array access is O(1)

Data structures + recursion = easy

Data-oblivious Computation

Bubble sort is the best

- Insertion sort is (also) the best
- Merge sort is the worst
- RAM/array access is O(log(N))
- Data structures + recursion = hard

TWO WORLDS

PROBLEM

compiler understands

data-oblivious computation

ation


```
if (raining) {
  ice_in_coffee = false;
  flavor = "hazelnut";
  drink = new_coffee(ice_in_coffee,
                     flavor,
                     null);
} else {
  ice_in_coffee = true;
  additive = "cream";
  drink = new_coffee(ice_in_coffee,
                     null,
                     additive);
```

CONTROL FLOW

Data-oblivious Computation

drink = raining ? drink_A : drink_B;

Data-oblivious Computation

- Decades of hardware/ISA research
- Decades of compiler/IR research
- Formal methods and analysis tools
- 100% bug-free tools (CompCert)
- High performance applications

Data-oblivious Computation

- Decades of hardware/ISA research
- Decades of compiler/IR research
- Formal methods and analysis tools
- 100% bug-free tools (CompCert)
- High performance applications

EARLY DAYS FOR DO

Data-oblivious Computation

- <1 decade of hardware/ISA research
- <1 decade of compiler/IR research
- ~0 formal methods and analysis tools
- ~0 bug-free tools
- Low performance applications

security and privacy enhancing technologies

A CALL TO ARMS

security and privacy enhancing technologies

A CALL TO ARMS

WHERE WE ARE

Oblivious Data Structures (ORAM) DO ISAs (TinyRam) DO Formal Methods (PMTO)

A CALL TO ARMS

WHERE WE ARE

Oblivious Data Structures (ORAM) DO ISAs (TinyRam) DO Formal Methods (PMTO)

A CALL TO ARMS

WHERE WE ARE

Oblivious Data Structures (ORAM) DO ISAs (TinyRam) DO Formal Methods (PMTO)

WHAT WE NEED

Prog. languages for DO (**usability**) Compilers for DO (**performance**) Static analyses for DO (accuracy) Data structures + libs for DO (**flexibility**) Formal methods for DO (assurance) Domain independence (**ubiquity**)

END


```
if (raining) {
    shopping[next_id] = "umbrella";
} else {
    shopping[next_id] = "sunglasses";
}
next_id++;
```



```
if (raining) {
  shopping[next_id] = "umbrella";
} else {
  shopping[next_id] = "sunglasses";
next_id++;
```

Data-oblivious Computation

tmp = shopping[next_id]; shopping[next_id] = raining ? "umbrella" : tmp; tmp = shopping[next_id]; shopping[next_id] = !raining ? "sunglasses" tmp;

next_id++;

